Background: Reactive case detection (RCD) is a commonly used strategy for malaria surveillance and response in elimination settings. Many approaches to RCD assume detectable infections are clustered within and around homes of passively detected cases (index households), which has been evaluated in a number of settings with disparate results. Methods: Household questionnaires and diagnostic testing were conducted following RCD investigations in Zanzibar, Tanzania, including the index household and up to 9 additional neighboring households. Results: Of 12,487 participants tested by malaria rapid diagnostic test (RDT), 3·2% of those residing in index households and 0·4% of those residing in non-index households tested positive (OR = 8·4; 95%CI: 5·7, 12·5). Of 6,281 participants tested by quantitative polymerase chain reaction (qPCR), 8·4% of those residing in index households and 1·3% of those residing in non-index households tested positive (OR = 7·1; 95%CI: 6·1, 10·9). Within households of index cases defined as imported, odds of qPCR-positivity amongst members reporting recent travel were 1·4 times higher than among those without travel history (95%CI: 0·2, 4·4). Amongst non-index households, odds of qPCR-detectable infection were no different between households located within 50 m of the index household as compared with those located farther away (OR = 0·8, 95%CI: 0·5, 1·4). Sensitivity of RDT to detect qPCR-detectable infections was 34% (95%CI: 26·4, 42·3). Conclusions: Malaria prevalence in index households in Zanzibar is much higher than in non-index households, in which prevalence is very low. Travelers represent a high-risk population. Low sensitivity of RDTs due to a high prevalence of low-density infections results in an RCD system missing a large proportion of the parasite reservoir.
Most malaria-endemic countries have struggled in the past decade to establish effective national-scale continuous distribution mechanisms for long-lasting insecticidal nets (LLINs). Since the implementation of the Tanzania National Voucher Scheme in 2004 and mass-distribution campaigns in 2009-2011 and 2015-2016, Tanzania has been committed to finding new and innovative ways of achieving and maintaining universal bed net coverage. Planning for the School Net Programme (SNP) began in 2011 and in 2013, the country piloted a SNP in three regions. Nets were distributed annually to children attending schools in selected primary and secondary grades. Intra-family redistribution was assumed, and hence the family as a whole, rather than just the children themselves, were the targeted beneficiaries. The programme has since expanded to 14 regions and has seen six rounds of annual distribution. In its fifth year, 3 million nets were distributed at a cost of USD 3.64 per net and USD 0.60 per person-year of protection (including the net). ITN access and use were maintained at a high level (~ 50-75%) over the first 4 years of distribution within selected evaluation areas, even in the absence of a mass distribution event. Net distribution through primary schools has proven to be a feasible and effective strategy for maintaining consistently high coverage in Tanzania.
Since 2012, the Zanzibar Malaria Elimination Program has been implementing reactive case detection (RACD). Health facility (HF) staff send individual malaria case notifications by using mobile phones, triggering a review of HF records and malaria testing and treatment at the household level by a district malaria surveillance officer. We assessed the completeness and timeliness of this system, from case notification to household-level response. We reviewed two years (2015-2016) of primary register information in 40 randomly selected HFs on Zanzibar's two islands Unguja and Pemba and database records of case notifications from all registered HFs for the period 2013-16. The operational coverage of the system was calculated as proportion of HF-registered cases that were successfully reviewed and followed up at their household. Timeliness was defined as completion of each step within 1 day. Public HFs notified almost all registered cases (91% in Unguja and 87% in Pemba), and 74% of cases registered at public HFs were successfully followed up at their household in Unguja and 79% in Pemba. Timely operational coverage (defined as each step, diagnosis to notification, notification to review, and review to household-level response, completed within 1 day) was achieved for only 25% of registered cases in Unguja and 30% in Pemba. Records and data from private HFs on Unguja indicated poor notification performance in the private sector. Although the RACD system in Zanzibar achieved high operational coverage, timeliness was suboptimal. Patients diagnosed with malaria at private HFs and hospitals appeared to be largely missed by the RACD system.
Many sub-Saharan African countries have achieved substantial gains in insecticide treated bednet coverage since 2005. The Tanzania National Malaria Control Programme identified school-based net distribution as one potential 'keep-up' strategy for the purpose of maintaining long-lasting insecticidal net (LLIN) coverage after a nationwide mass campaign in 2011. The School Net Programme (SNP) was implemented in three regions of southern Tanzania and distributed one LLIN to each enrolled child attending schools in primary grades (standards) 1, 3, 5 and 7, and secondary grades (forms) 2 and 4 in 2013 and again with slightly modified eligibility criteria in 2014 and 2015. Household surveys in the programme area as well as in a control area were conducted after each of the SNP distributions to measure ownership and use of long-lasting insecticide treated nets. Ownership of at least one LLIN after the first distribution was 76.1% (95% CI 70.8-80.7) in the intervention area and 78.6% (95% CI 74.4-82.3) in the control area. After the second distribution, ownership of at least one LLIN had dropped significantly in the control area to 65.4% (95% CI 59.5-71.0) in 2015 (P < 0.001), while coverage in the intervention area was maintained at 79.3% (95% CI 75.4 × 82.6). Ownership of at least one LLIN in intervention area remained stable following the second round of net distribution. During the same period LLIN ownership, especially of enough nets to ensure all household member access, fell significantly in the control area. These results demonstrate that the SNP may be sufficient to maintain stable LLIN coverage following a mass distribution of LLINs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.