Most malaria-endemic countries have struggled in the past decade to establish effective national-scale continuous distribution mechanisms for long-lasting insecticidal nets (LLINs). Since the implementation of the Tanzania National Voucher Scheme in 2004 and mass-distribution campaigns in 2009-2011 and 2015-2016, Tanzania has been committed to finding new and innovative ways of achieving and maintaining universal bed net coverage. Planning for the School Net Programme (SNP) began in 2011 and in 2013, the country piloted a SNP in three regions. Nets were distributed annually to children attending schools in selected primary and secondary grades. Intra-family redistribution was assumed, and hence the family as a whole, rather than just the children themselves, were the targeted beneficiaries. The programme has since expanded to 14 regions and has seen six rounds of annual distribution. In its fifth year, 3 million nets were distributed at a cost of USD 3.64 per net and USD 0.60 per person-year of protection (including the net). ITN access and use were maintained at a high level (~ 50-75%) over the first 4 years of distribution within selected evaluation areas, even in the absence of a mass distribution event. Net distribution through primary schools has proven to be a feasible and effective strategy for maintaining consistently high coverage in Tanzania.
Background: Insecticide-treated nets (ITNs) are one of the most cost-effective measures for preventing malaria. The World Health Organization recommends both large-scale mass distribution campaigns and continuous distributions (CD) as part of a multifaceted strategy to achieve and sustain universal access to ITNs. A combination of these strategies has been effective for scaling up ITN access. For policy makers to make informed decisions on how to efficiently implement CD or combined strategies, information on the costs and cost-effectiveness of these delivery systems is necessary, but relatively few published studies of the cost continuous distribution systems exist. Methods:To address the gap in continuous distribution cost data, four types of delivery systems-CD through antenatal care services (ANC) and the expanded programme on immunization (EPI) (Ghana, Mali, and mainland Tanzania), CD through schools (Ghana and mainland Tanzania), and a combined community/health facility-based distribution (Zanzibar, Tanzania), as well as mass distributions (Mali)-were costed. Data on costs were collected retrospectively from financial and operational records, stakeholder interviews, and resource use surveys. Results:Overall, from a full provider perspective, mass distributions and continuous systems delivered ITNs at overlapping economic costs per net distributed (mass distributions: 4.37-4.61 USD, CD channels: 3.56-9.90 USD), with two of the school-based systems and the mass distributions at the lower end of this range. From the perspective of international donors, the costs of the CD systems were, for the most part, less costly than the mass distributions (mass distributions: 4.34-4.55 USD, Ghana and Tanzania 2017 school-based: 3.30-3.69 USD, health facility-based: 3.90-4.55 USD, combined community/health facility 4.55 USD). The 2015 school-based distribution (7.30 USD) and 2016 health facility-based distribution (6.52 USD) programmes in Tanzania were an exception. Mass distributions were more heavily financed by donors, while CD relied more extensively on domestic resource contributions. Conclusions:These results suggest that CD strategies can continue to deliver nets at a comparable cost to mass distributions, especially from the perspective of the donor.
The incidence of mosquito-borne disease poses a significant threat to human and animal health throughout the world, with effective chemical control interventions limited by widespread insecticide resistance. Recent evidence suggests that gut bacteria of mosquitoes, known to be essential in nutritional homeostasis and pathogen defense, may also play a significant role in facilitating insecticide resistance. This study investigated the extent to which bacteria contribute to the general esterase and cytochrome P450 monooxygenase (P450)-mediated detoxification of the insecticides propoxur and naled, as well as the insecticidal activity of these chemistries to the yellow fever mosquito, Aedes aegypti. Experiments conducted using insecticide synergists that reduce general esterase and P450 activity demonstrate a role for both groups of enzymes in the metabolic detoxification of propoxur and naled. Furthermore, reduction of bacteria in mosquito larvae using broad-spectrum antibiotics was found to decrease the metabolic detoxification of propoxur and naled, suggesting that the bacteria themselves may be contributing to the in vivo metabolic 1 digitalcommons.unl.edu
Background Widespread insecticide resistance to pyrethroids could thwart progress towards elimination. Recently, the World Health Organization has encouraged the use of non-pyrethroid insecticides to reduce the spread of insecticide resistance. An electronic tool for implementing and tracking coverage of IRS campaigns has recently been tested (mSpray), using satellite imagery to improve the accuracy and efficiency of the enumeration process. The purpose of this paper is to retrospectively analyse cross-sectional observational data to provide evidence of the epidemiological effectiveness of having introduced Actellic 300CS and the mSpray platform into IRS programmes across Zambia. Methods Health facility catchment areas in 40 high burden districts in 5 selected provinces were initially targeted for spraying. The mSpray platform was used in 7 districts in Luapula Province. An observational study design was used to assess the relationship between IRS exposure and confirmed malaria case incidence. A random effects Poisson model was used to quantify the effect of IRS (with and without use of the mSpray platform) on confirmed malaria case incidence over the period 2013–2017; analysis was restricted to the 4 provinces where IRS was conducted in each year 2014–2016. Results IRS was conducted in 283 health facility catchment areas from 2014 to 2016; 198 health facilities from the same provinces, that received no IRS during this period, served as a comparison. IRS appears to be associated with reduced confirmed malaria incidence; the incidence rate ratio (IRR) was lower in areas with IRS but without mSpray, compared to areas with no IRS (IRR = 0.91, 95% CI 0.84–0.98). Receiving IRS with mSpray significantly lowered confirmed case incidence (IRR = 0.75, 95% CI 0.66–0.86) compared to no IRS. IRS with mSpray resulted in lower incidence compared to IRS without mSpray (IRR = 0.83, 95% CI 0.72–0.95). Conclusions IRS using Actellic-CS appears to substantially reduce malaria incidence in Zambia. The use of the mSpray tool appears to improve the effectiveness of the IRS programme, possibly through improved population level coverage. The results of this study lend credence to the anecdotal evidence of the effectiveness of 3GIRS using Actellic, and the importance of exploring new platforms for improving effective population coverage of areas targeted for spraying.
Background Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. Methods Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. Conclusions Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.