Preclinical studies for neurodegenerative diseases have shown a multi-targeted approach to be successful in the treatment of these complex disorders with several pathoetiological pathways. Polycyclic compounds, such as NGP1-01 (7a), have demonstrated the ability to target multiple mechanisms of the complex etiology and are referred to as multifunctional compounds. These compounds have served as scaffolds with the ability to attenuate Ca2+ overload and excitotoxicity through several pathways. In this study, our focus was on mitigating Ca2+ overload through the L-type calcium channels (LTCC). Here, we report the synthesis and biological evaluation of several novel polycyclic compounds. We determined the IC50 values for both the pentacycloundecylamines and the triquinylamines by means of a high-throughput fluorescence calcium flux assay utilizing Fura-2/AM. The potential of these compounds to offer protection against hydrogen peroxide-induced cell death was also evaluated. Overall, 8-benzylamino-8,11-oxapentacyclo[5.4.0.02,6.03,10.05,9]undecane (NGP1-01, 7a) had the most favorable pharmacological profile with an IC50 value of 86 μM for LTCC inhibition and significant reduction of hydrogen peroxide-induced cell death. In general, the triquinylamines were more active as LTCC blockers than the oxa-pentacycloundecylamines. The aza-pentacycloundecylamines were potent LTCC inhibitors, with 8-hydroxy-N-phenylethyl-8,11-azapentacyclo[5.4.0.02,6.03,10.05,9]undecane (8b) also able to offer significant protection in the cell viability assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.