Objectives: The molecular factors contributing to the development of Barrett's esophagus (BE) are unclear. Our previous studies showed that BE tissues secrete interleukin-6
Purpose: Barrett's esophagus (BE) is a common premalignant lesion of the distal part of the esophagus that arises as a consequence of chronic duodenogastroesophageal reflux. Interleukin (IL)-6 is a pleiotropic cytokine that regulates immune defense mechanisms and hematopoiesis. In addition, IL-6 may also be involved in malignant transformation and tumor progression. IL-6 has been shown to inhibit apoptosis. The major aim of this study was to evaluate expression of IL-6 in BE at the protein and mRNA levels. In addition, we tested whether proteins that are associated with IL-6 signaling, phosphorylated signal transducer and activator of transcription 3 and two antiapoptotic proteins, Bcl-x L and Mcl-1, are also expressed in the same tissues.Experimental Design: Biopsies of duodenum, BE, and squamous epithelium were evaluated by using a human cytokine protein array, ELISA, real-time PCR, and immunohistochemistry.Results: Increased IL-6 levels were found to be secreted from BE tissue compared with duodenum or squamous epithelium from sites adjacent or 5 cm away from the BE lesion. IL-6 mRNA was also elevated in BE compared with duodenum or squamous epithelium in five of seven patients.Immunohistochemical studies confirmed IL-6 expression in intestinal glandular epithelium in BE tissue. Activated signal transducer and activator of transcription 3, Mcl-1, and Bcl-x L are present at higher levels in BE glands, with lower levels being found in duodenum or squamous epithelium Conclusions: These data, taken together, suggest that elevated IL-6 levels in BE may contribute to the development of apoptosis resistance, thereby placing this epithelium at higher risk of developing malignancy.
The results suggest that exposure of the colonic mucosa to DOC may be a key etiologic factor in IBD. The DOC-fed mouse model may reflect the natural course of development of colitis/IBD in humans, and thus may be useful for determining new preventive strategies and lifestyle changes in affected individuals.
BackgroundCancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations.PurposeTo determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer.ResultsTissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million.ConclusionsThe substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million crypts near cancers and TVAs suggests that the tumors arose in field defects that were deficient in DNA repair and that deficiencies in Pms2, Ercc1 and Xpf are early steps, often occurring together, in progression to colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.