A transparent and extensible malware analysis platform is essential for defeating malware. This platform should be transparent so malware cannot easily detect and bypass it. It should also be extensible to provide strong support for heavyweight instrumentation and analysis efficiency. However, no existing platform can meet both requirements. Leveraging hardware virtualization technology, analysis platforms like Ether can achieve good transparency, but its instrumentation support and analysis efficiency are weak. In contrast, software emulation provides strong support for code instrumentation and good analysis efficiency by using dynamic binary translation. However, analysis platforms based on software emulation can be easily detected by malware and thus is poor in transparency. To achieve both transparency and extensibility, we propose a new analysis platform that combines hardware virtualization and software emulation. The essence is precise heterogeneous replay: the malware execution is recorded via hardware virtualization and then replayed in software. Our design ensures the execution replay to be precise. Moreover, with page-level recording granularity, the platform can easily adjust to analyze various forms of malware (a process, a kernel module, or a shared library). We implemented a prototype called V2E and demonstrated its capability and efficiency by conducting an extensive evaluation with both synthetic samples and 14 realworld emulation-resistant malware samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.