Epidemiological studies reported adverse effects of air pollution on the prevalence of respiratory diseases in children. The purpose of this study was to examine the association between air pollution and admissions for asthma and other respiratory diseases among children who were younger than 15 yr of age. The study used data on respiratory hospital admissions and air pollutant concentrations, including thoracic particulate matter (PM(10)), fine (PM(2.5)), and coarse (PM(10-2.5)) particulate matter in Zonguldak, Turkey. A bidirectional case-crossover design was used to calculate odds ratios for the admissions adjusted for daily meteorological parameters. Significant increases were observed for hospital admissions in children for asthma, allergic rhinitis (AR), and upper (UPRD) and lower (LWRD) respiratory diseases. All fraction of PM in children showed significant positive associations with asthma admissions. The highest association noted was 18% rise in asthma admissions correlated with a 10-microg/m(3) increase in PM(10-2.5) on the same day of admissions. The adjusted odds ratios for exposure to PM(2.5) with an increment of 10 microg/m(3) were 1.15 and 1.21 for asthma and allergic rhinitis with asthma, respectively. PM(10) exerted significant effects on hospital admissions for all outcomes, including asthma, AR, UPRD, and LWRD. Our study suggested a greater effect of fine and coarse PM on asthma hospital admissions compared with PM(10) in children.
In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 microm in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 microg/m3, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area.
Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus and has been affecting the world since the end of 2019. The disease led to significant mortality and morbidity in Turkey, since the first case was reported on March 11
th
, 2020.
Studies suggest a positive association between air pollution and SARS-CoV-2 infection. The aim of the present study was to investigate the role of ambient particulate matters (PM), as potential carriers for SARS-CoV-2.
Ambient PM samples in various size ranges were collected from 13 sites including urban and urban-background locations and hospital gardens in 10 cities across Turkey between 13th of May and 14th of June 2020 to investigate the possible presence of SARS-CoV-2 RNA on ambient PM. A total of 203 daily samples (TSP, n=80; PM
2.5
n=33; PM
2.5-10
, n=23; PM
10
μm, n=19; and 6 size segregated PM, n=48) were collected using various samplers. The N1 gene and RdRP gene expressions were analyzed for the presence of SARS-CoV-2, as suggested by the Centers for Disease Control and Prevention (CDC). According to real time (RT)-PCR and three-dimensional digital (3D-d) PCR analysis, dual RdRP and N1 gene positivity were detected in 20 (9.8 %) samples. Ambient PM-bound SARS-CoV-2 was analyzed quantitatively and the air concentrations of the virus ranged from 0.1 copies/m
3
to 23 copies/m
3
. The highest percentages of virus detection on PM samples were from hospital gardens in Tekirdağ, Zonguldak, and Istanbul, especially in PM
2.5
mode. Findings of this study have suggested that SARS-CoV-2 may be transported by ambient particles, especially at sites close to the infection hot-spots. However, whether this has an impact on the spread of the virus infection remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.