Glucagon-like peptide 1 (GLP-1) metabolism was studied in halothane-anesthetized pigs (n = 7) using processing-independent (PI) and COOH-terminal (C) radioimmunoassays (RIA) and an enzyme-linked immunosorbent assay (ELISA) specific for biologically active GLP-1. Renal extraction of endogenous GLP-1 was detected by PI-RIA (33.1 +/- 13.3%) and C-RIA (16.0 +/- 6.3%) and by all assays during GLP-1 infusion (ELISA, 69.4 +/- 6.3%; PI-RIA, 32.6 +/- 7.3%; C-RIA, 43.7 +/- 3.4%), indicating substantial fragmentation. Hepatic and pulmonary degradation were undetectable under basal conditions, but exogenous GLP-1 elimination by the liver (43.6 +/- 8.9%) and lungs (10.1 +/- 3.2%) was measured by ELISA, suggesting primarily NH2-terminal degradation. Endogenous GLP-1 extraction by the hindleg was only detected by C-RIA (16.0 +/- 6.3%). During GLP-1 infusion, greater hindleg extraction was measured by ELISA (38.5 +/- 6.8%) and C-RIA (33.0 +/- 6.4%) than by PI-RIA (11.4 +/- 3.2%), indicating limited degradation at each terminus or more substantial COOH-terminal degradation. A shorter (P < 0.01) plasma half-life was revealed by ELISA (1.5 +/- 0.4 min) than by PI-RIA (4.5 +/- 0.6 min) or C-RIA (4.1 +/- 0.5 min). Metabolic clearance rates measured by PI-RIA (20.0 +/- 3.8 ml.min-1.kg-1) and C-RIA (15.5 +/- 1.6 ml.min-1.kg-1) were shorter (P < 0.01) than that measured by ELISA (106.8 +/- 14.7 ml.min-1.kg-1). Tissue-specific differential metabolism of GLP-1 occurs, and NH2-terminal degradation, rendering GLP-1 inactive, is particularly important in its clearance.
Adipocytes play a central role in whole-body energy homoeostasis. Complex regulatory transcriptional networks control adipogensis, with ligand-dependent activation of PPARγ (peroxisome proliferator-activated receptor γ) being a decisive factor. Yet the identity of endogenous ligands promoting adipocyte differentiation has not been established. Here we present a critical evaluation of the role of LOXs (lipoxygenases) during adipocyte differentiation of 3T3-L1 cells. We show that adipocyte differentiation of 3T3-L1 preadipocytes is inhibited by the general LOX inhibitor NDGA (nordihydroguaiaretic acid) and the 12/15-LOX selective inhibitor baicalein. Baicalein-mediated inhibition of adipocyte differentiation was rescued by administration of rosiglitazone. Treatment with baicalein during the first 4 days of the differentiation process prevented adipocyte differentiation; supplementation with rosiglitazone during the same period was sufficient to rescue adipogenesis. Accordingly, we demonstrate that adipogenic conversion of 3T3-L1 cells requires PPARγ ligands only during the first 4 days of the differentiation process. We show that the baicalein-sensitive synthesis of endogenous PPARγ ligand(s) increases rapidly upon induction of differentiation and reaches a maximum on days 3–4 of the adipocyte differentiation programme. The conventional platelet- and leucocyte-type 12(S)-LOXs and the novel eLOX-3 (epidermis-type LOX-3) are expressed in white and brown adipose tissue, whereas only eLOX-3 is clearly expressed in 3T3-L1 cells. We suggest that endogenous PPARγ ligand(s) promoting adipocyte differentiation are generated via a baicalein-sensitive pathway involving the novel eLOX-3.
IntroductionInsulin icodec is a novel, long-acting insulin analog designed to cover basal insulin requirements with once-weekly subcutaneous administration. Here we describe the molecular engineering and the biological and pharmacological properties of insulin icodec.Research design and methodsA number of in vitro assays measuring receptor binding, intracellular signaling as well as cellular metabolic and mitogenic responses were used to characterize the biological properties of insulin icodec. To evaluate the pharmacological properties of insulin icodec in individuals with type 2 diabetes, a randomized, double-blind, double-dummy, active-controlled, multiple-dose, dose escalation trial was conducted.ResultsThe long half-life of insulin icodec was achieved by introducing modifications to the insulin molecule aiming to obtain a safe, albumin-bound circulating depot of insulin icodec, providing protracted insulin action and clearance. Addition of a C20 fatty diacid-containing side chain imparts strong, reversible albumin binding, while three amino acid substitutions (A14E, B16H and B25H) provide molecular stability and contribute to attenuating insulin receptor (IR) binding and clearance, further prolonging the half-life. In vitro cell-based studies showed that insulin icodec activates the same dose-dependent IR-mediated signaling and metabolic responses as native human insulin (HI). The affinity of insulin icodec for the insulin-like growth factor-1 receptor was proportionately lower than its binding to the IR, and the in vitro mitogenic effect of insulin icodec in various human cells was low relative to HI. The clinical pharmacology trial in people with type 2 diabetes showed that insulin icodec was well tolerated and has pharmacokinetic/pharmacodynamic properties that are suited for once-weekly dosing, with a mean half-life of 196 hours and close to even distribution of glucose-lowering effect over the entire dosing interval of 1 week.ConclusionsThe molecular modifications introduced into insulin icodec provide a novel basal insulin with biological and pharmacokinetic/pharmacodynamic properties suitable for once-weekly dosing.Trial registration numberNCT02964104.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.