The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells.
Abstract-This paper presents our discovery that self-rotation of Melan-a pigment cells can be induced by applying appropriate optical dielectrophoretic (ODEP) parameters. Under optically induced DEP force, which is generated by specific optical electrode patterns and with a band-width of AC bias frequencies, Melan-a cells can be trapped or repelled away from the optical electrodes. In addition, the self-rotation motion of the Melan-a cells was observed. In particular, the applied frequency and
Discretely functionalized gold nanoparticles (AuNPs) with an amine surface functional group on each AuNP have been synthesized as a crude mixture with a significant amount of nonfunctional AuNPs. By employing the mechanoresponsive nature and reversible self-assembling properties of the monofunctionalized AuNP on a crown ether-coated gold surface, mono-functionalized AuNPs have been successfully isolated from a crude mixture. A real-time surface plasmon resonance (SPR) with organic solvent-compatible microfluidic device/instrumentation has been built together with a three-step denoising procedure for the detection of SPR absorption dip shifts with high sensitivity. With this instrument, pH-driven self-assembly and disassembly processes of the mono-functionalized gold nanoparticles (AuNPs), non-functional/mono-functionalized (crude) AuNPs, and randomly functionalized AuNPs on a crown ether-coated gold surface have been monitored simultaneously. From the real-time SPR traces, in general, the self-assembled AuNPs are stable on the surface with a solvent flow for a long period of time. These AuNPs possess different self-assembling and disassembling properties. In particular, SPR response traces obtained from mono-functionalized AuNPs reveal complete pH-driven self-assembly and disassembly processes on the gold surface. This device has enabled real-time monitoring of mono-functionalized AuNPs characteristics with the exclusion of non-functional AuNPs in a crude mixture. The SPR trace of self-assembled, randomly functionalized AuNPs indicates that only partial AuNPs were disassembled from the surface and eluted away after base treatment. Residue randomly functionalized AuNPs that were intact with the gold surface might possess higher number of functional group on each NP, rendering multivalent binding with enhanced stability towards the base. This observation has also been confirmed by atomic force microscopy (AFM). SPR monitoring of discretely functionalized AuNPs enables a real-time characterization other than the conventional transmission electron microscopy (TEM) and UV/visible absorption spectroscopic methods. The reported mono-functionalized AuNPs may find applications in single molecular detection and analysis of molecular binding events with a quantification capability with higher sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.