The threshold wind speed for snow transport is related to properties of the surface snowpack: snow particle bonding, cohesion, and kinetic friction. These properties are controlled by meteorological factors. A method is proposed that relates the threshold wind speed for the initiation of snow transport to standard surface meteorological observations. A complete dataset on the hourly threshold condition for snow transport as determined from visual observation was developed for 16 stations on the prairies of western Canada over six winters. The threshold wind speeds for wet snow transport are significantly different from those for dry snow transport. The majority of recorded threshold 10-m wind speeds ranged from 7 to 14 m s Ϫ1 with an average of 9.9 m s Ϫ1 for wet snow transport, and from 4 to 11 m s Ϫ1 with an average of 7.7 m s Ϫ1 for dry snow transport. The observations display a nonlinear but generally positive correlation between threshold wind speed and air temperature. An empirical model between threshold wind speed and air temperature was developed for dry snow conditions. The model, on average, provides a good estimate of the threshold wind speed.
The significant reduction in human activities during COVID‐19 lockdown is anticipated to substantially influence urban climates, especially urban heat islands (UHIs). However, the UHI variations during lockdown periods remain to be quantified. Based on the MODIS daily land surface temperature and the in‐situ surface air temperature observations, we reveal a substantial decline in both surface and canopy UHIs over 300‐plus megacities in China during lockdown periods compared with reference periods. The surface UHI intensity (UHII) is reduced by 0.25 (one S.D. = 0.22) K in the daytime and by 0.23 (0.20) K at night during lockdown periods. The reductions in canopy UHII reach 0.42 (one S.D. = 0.26) K in the daytime and 0.39 (0.29) K at night. These reductions are mainly due to the near‐unprecedented drop in human activities induced by strict lockdown measures. Our results provide an improved understanding of the urban climate variations during the global pandemic.
Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.