Hybridization and introgression can play an important role in speciation. Here, we examine their roles in the origin and evolution of Picea purpurea, a diploid spruce species occurring on the Qinghai-Tibet Plateau (QTP). Phylogenetic relationships and ecological differences between this species and its relatives, P. schrenkiana, P. likiangensis and P. wilsonii, are unclear. To clarify them, we surveyed sequence variation within and between them for 11 nuclear loci, three chloroplast (cp) and two mitochondrial (mt) DNA fragments, and examined their ecological requirements using ecological niche modelling. Initial analyses based on 11 nuclear loci rejected a close relationship between P. schrenkiana and P. purpurea. BP&P tests and ecological niche modelling indicated substantial divergence between the remaining three species and supported the species status of P. purpurea, which contained many private alleles as expected for a well-established species. Sequence variation for cpDNA and mtDNA suggested a close relationship between P. purpurea and P. wilsonii, while variation at the nuclear se1364 gene suggested P. purpurea was more closely related to P. likiangensis. Analyses of genetic divergence, Bayesian clustering and model comparison using approximate Bayesian computation (ABC) of nuclear (nr) DNA variation all supported the hypothesis that P. purpurea originated by homoploid hybrid speciation from P. wilsonii and P. likiangensis. The ABC analysis dated the origin of P. purpurea at the Pleistocene, and the estimated hybrid parameter indicated that 69% of its nuclear composition was contributed by P. likiangensis and 31% by P. wilsonii. Our results further suggested that during or immediately following its formation, P. purpurea was subject to organelle DNA introgression from P. wilsonii such that it came to possess both mtDNA and cpDNA of P. wilsonii. The estimated parameters indicated that following its origin, P. purpurea underwent an expansion during/after the largest Pleistocene glaciation recorded for the QTP.
A knowledge of intraspecific divergence and range dynamics of dominant forest trees in response to past geological and climate change is of major importance to an understanding of their recent evolution and demography. Such knowledge is informative of how forests were affected by environmental factors in the past and may provide pointers to their response to future environmental change. However, genetic signatures of such historical events are often weak at individual loci due to large effective population sizes and long generation times of forest trees. This problem can be overcome by analysing genetic variation across multiple loci. We used this approach to examine intraspecific divergence and past range dynamics in the conifer Picea likiangensis, a dominant tree of forests occurring in eastern and southern areas of the Qinghai-Tibet Plateau (QTP). We sequenced 13 nuclear loci, two mitochondrial DNA regions and three plastid (chloroplast) DNA regions in 177 individuals sampled from 22 natural populations of this species, and tested the hypothesis that its evolutionary history was markedly affected by Pliocene QTP uplifts and Quaternary climatic oscillations. Consistent with the taxonomic delimitation of the three morphologically divergent varieties examined, all individuals clustered into three genetic groups with intervariety admixture detected in regions of geographical overlap. Divergence between varieties was estimated to have occurred within the Pliocene and ecological niche modelling based on 20 ecological variables suggested that niche differentiation was high. Furthermore, modelling of population-genetic data indicated that two of the varieties (var. rubescens and var. linzhiensis) expanded their population sizes after the largest Quaternary glaciation in the QTP, while expansion of the third variety (var. likiangensis) began prior to this, probably following the Pliocene QTP uplift. These findings point to the importance of geological and climatic changes during the Pliocene and Pleistocene as causes of intraspecific diversification and range shifts of dominant tree species in the QTP biodiversity hot spot region.
To discover new agents active against methicillin-resistant Staphylococcus aureus (MRSA), in silico models derived from 5451 cell-based anti-MRSA assay data were developed using four machine learning methods, including naïve Bayesian, support vector machine (SVM), recursive partitioning (RP), and k-nearest neighbors (kNN). A total of 876 models have been constructed based on physicochemical descriptors and fingerprints. The overall predictive accuracies of the best models exceeded 80% for both training and test sets. The best model was employed for the virtual screening of anti-MRSA compounds, which were then validated by a cell-based assay using the broth microdilution method with three types of highly resistant MRSA strains (ST239, ST5, and 252). A total of 12 new anti-MRSA agents were confirmed, which had MIC values ranging from 4 to 64 mg/L. This work proves the capacity of combined multiple ligand-based approaches for the discovery of new agents active against MRSA with cell-based assays. We think this work may inspire other lead identification processes when cell-based assay data are available.
The extent of mutation, introgression and lineage sorting taking place during interspecific divergence and demographic changes in the three species had varied greatly between the three genomes. The findings highlight the complex evolutionary histories of these three Asian spruce species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.