Medical imaging can assess the tumor and its environment in their entirety, which makes it suitable for monitoring the temporal and spatial characteristics of the tumor. Progress in computational methods, especially in artificial intelligence for medical image process and analysis, has converted these images into quantitative and minable data associated with clinical events in oncology management. This concept was first described as radiomics in 2012. Since then, computer scientists, radiologists, and oncologists have gravitated towards this new tool and exploited advanced methodologies to mine the information behind medical images. On the basis of a great quantity of radiographic images and novel computational technologies, researchers developed and validated radiomic models that may improve the accuracy of diagnoses and therapy response assessments. Here, we review the recent methodological developments in radiomics, including data acquisition, tumor segmentation, feature extraction, and modelling, as well as the rapidly developing deep learning technology. Moreover, we outline the main applications of radiomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalized medicine. Finally, we discuss the challenges in the field of radiomics and the scope and clinical applicability of these methods.
Purpose: We evaluated the performance of the newly proposed radiomics of multiparametric MRI (RMM), developed and validated based on a multicenter dataset adopting a radiomic strategy, for pretreatment prediction of pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Experimental Design: A total of 586 potentially eligible patients were retrospectively enrolled from four hospitals (primary cohort and external validation cohort 1-3). Quantitative imaging features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging before NAC for each patient. With features selected using a coarse to fine feature selection strategy, four radiomic signatures were constructed based on each of the three MRI sequences and their combination. RMM was developed based on the best radiomic signature incorporating with independent clinicopathologic risk factors. The performance of RMM was assessed with respect to its discrimination and clinical usefulness, and compared with that of clinical information-based prediction model. Results: Radiomic signature combining multiparametric MRI achieved an AUC of 0.79 (the highest among the four radiomic signatures). The signature further achieved good performances in hormone receptor-positive and HER2negative group and triple-negative group. RMM yielded an AUC of 0.86, which was significantly higher than that of clinical model in two of the three external validation cohorts. Conclusions: The study suggested a possibility that RMM provided a potential tool to develop a model for predicting pCR to NAC in breast cancer.
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.