Pervious concretes, as sustainable pavement materials, have great advantages in addressing a number of environmental issues. Fly ash, as the industrial by-product waste, is the most commonly used as cement substitute in concrete. The objective of this paper is to study the effects of waste fly ash on properties of pervious concrete. Fly ash was used to replace cement with equivalent volume method at different levels (3%, 6%, 9%, and 12%). The control pervious concrete and fly ash modified pervious concrete were prepared in the laboratory. The porosity, permeability, compressive strength, flexural strength, and freeze–thaw resistance of all mixtures were tested. The results indicated that the addition of fly ash decreased the early-age (28 d) compressive strength and flexural strength, but the long-term (150 d) compressive strength and flexural strength of fly ash modified pervious concrete were higher than that of the early-age. The adverse effect of fly ash on freeze–thaw resistance of pervious concrete was observed when the fly ash was added. The porosity and permeability of all pervious concrete mixtures changed little with the content of fly ash due to the use of equal volume replacement method. Although fly ash is not positive to the properties of pervious concrete, it is still feasible to apply fly ash as a substitute for cement in pervious concrete.
Pervious concretes, such as sustainable pavement materials, have great advantages in solving urban flooding, promoting urban ecological balance, and alleviating urban heat island effect, due to its special porous structure. However, pervious concrete typically has high porosity and low strength. The insufficient strength and poor freeze-thaw durability are important factors that restrict its wide application, especially in seasonal frozen areas. Improving the strength and freeze-thaw resistance of pervious concrete will expand its application. Silica fumes, as an industrial by-product waste and supplementary cementitious material, play an important role in improving concrete performance. The objective of this paper was to study the effects of silica fumes on properties of sustainable pervious concrete. Silica fumes were used to replace cement with the equivalent volume method at different levels (3%, 6%, 9%, and 12%). The control pervious concrete and silica fume-modified pervious concrete mixtures were prepared in the lab. The porosity, permeability, compressive strength, flexural strength, and freeze-thaw resistance properties of all mixtures were tested. The results indicated that the addition of silica fumes significantly improved the strength and freeze-thaw resistance of pervious concrete. The porosity and permeability of all pervious concrete mixtures changed little with the content of silica fumes due to the adoption of the equal volume replacement method.
Abstract:Parallel algorithms, such as the ant colony algorithm, take a long time when solving large-scale problems. In this paper, the MAX-MIN Ant System algorithm (MMAS) is parallelized to solve Traveling Salesman Problem (TSP) based on a Spark cloud computing platform. We combine MMAS with Spark MapReduce to execute the path building and the pheromone operation in a distributed computer cluster. To improve the precision of the solution, local optimization strategy 2-opt is adapted in MMAS. The experimental results show that Spark has a very great accelerating effect on the ant colony algorithm when the city scale of TSP or the number of ants is relatively large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.