Polytetrafluoroethylene/Poly(methyl methacrylate) (PTFE/PMMA) composite was prepared by mixing PTFE into PMMA matrix which synthesized by the PMMA powder mixture and methyl methacrylate (MMA) liquid mixture. The effects of the filling mass ratio of PTFE and powder/liquid (P/L) ratio on the friction and wear properties of PTFE/PMMA composites against bearing steel were studied by a ball-on-disk tribometer. Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize the synthesis of PTFE/PMMA composite. The shore hardness and glass transition temperature (Tg) were obtained respectively by shore hardness tester and differential scanning calorimetry (DSC). The results show that the friction coefficient and wear rate of PMMA based composite, comparing with the unfilled PMMA, can be significantly reduced by filling with PTFE. With the increasing of PTFE filling mass ratio, the wear rate of PTFE/PMMA composite increases. The friction coefficient and wear rate of the unfilled PMMA and PTFE/PMMA composite generally decrease with the P/L ratio increasing. The main wear mechanism of the unfilled PMMA is adhesive wear. While the main wear mechanisms of PTFE/PMMA composites are fatigue wear and abrasive wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.