Aberrant T-cell activation underlies many autoimmune disorders, yet most attempts to induce T-cell tolerance have failed. Building on previous strategies for tolerance induction that exploited natural mechanisms for clearing apoptotic debris, we show that antigen-decorated microparticles (500-nm diameter) induce long-term T-cell tolerance in mice with relapsing experimental autoimmune encephalomyelitis. Specifically, intravenous infusion of either polystyrene or biodegradable poly(lactide-co-glycolide) microparticles bearing encephalitogenic peptides prevents the onset and modifies the course of the disease. These beneficial effects require microparticle uptake by marginal zone macrophages expressing the scavenger receptor MARCO and are mediated in part by the activity of regulatory T cells, abortive T-cell activation and T-cell anergy. Together these data highlight the potential for using microparticles to target natural apoptotic clearance pathways to inactivate pathogenic T cells and halt the disease process in autoimmunity.
Type 1 diabetes is an autoimmune disorder in which the immune system attacks and destroys insulin-producing islet cells of the pancreas. Although islet transplantation has proved to be successful for some patients with type 1 diabetes, its widespread use is limited by islet donor shortage and the requirement for lifelong immunosuppression. An encapsulation strategy that can prevent the rejection of xenogeneic islets or of stem cell-derived allogeneic islets can potentially eliminate both of these barriers. Although encapsulation technology has met several challenges, the convergence of expertise in materials, nanotechnology, stem cell biology and immunology is allowing us to get closer to the goal of encapsulated islet cell therapy for humans.
Oocytes grown in vitro are of low quality and yield few live births, thus limiting the ability to store or bank the ova of women wishing to preserve their fertility. We applied tissue engineering principles to the culture of immature mouse follicles by designing an alginate hydrogel matrix to maintain the oocyte's 3- dimensional (3D) architecture and cell-cell interactions in vitro. A 3D culture mimics the in vivo follicle environment, and hydrogel-encapsulated follicles develop mature oocytes within the capacity for fertilization similar to that of oocytes matured in vivo. Embryos derived from cultured oocytes fertilized in vitro and transferred to pseudopregnant female mice were viable, and both male and female offspring were fertile. Our results demonstrate that alginate hydrogel-based 3D in vitro culture of follicles permits normal growth and development of follicles and oocytes. This system creates new opportunities for discovery in follicle biology and establishes a core technology for human egg banks for preservation of fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.