Explaining the "prior-residence effect" (automatic owner status of individuals who arrived first in an area) was one of the very first applications of game theory in animal behavior. These models, however, predict paradoxical solutions where intruders always win, with no satisfactory explanation for the absence of such cases in nature. We propose a solution based on new developments in evolutionary game theory. A self-consistent model with feedbacks between individual behavior and population dynamics produces qualitatively different frequency-dependent selection on intruders (floaters) than on territory owners. Starting with an ancestral population with no respect for ownership, the most likely evolutionary end point is complete or partial respect. Conventional rules of conflict resolution thus can rely on "uncorrelated asymmetries" without differences in resource-holding power or territory value, although they will be strengthened by such differences. We also review the empirical literature on animal contests, testing whether asymmetries in resource-holding power are required to explain the observations. Despite much empirical effort, results remain inconclusive, because experiments are often unable to distinguish between the motivation of individuals to fight and the behavioral outcome of a contest. To help arrive at conclusive answers, we suggest a standardized empirical approach to quantify prior-residence effects.
The carrying capacity of an environment is determined partly by how individuals compete over the available resources. To territorial animals, space is an important resource, leading to conflict over its use. We build a model where the carrying capacity for an organism in a given environment results from the evolution of territorial defense effort and the consequent space use. The same evolutionary process can yield two completely different modes of population regulation. Density dependence arises through expanding and shrinking territories if fecundity is low, breeding success increases gradually with territory size, and/or defense is cheap. By contrast, when fecundity is high, breeding success sharply saturates with territory size, and/or defense is costly, we predict fixed territory sizes and regulation by floaters. These "surplus" individuals form a buffer against population fluctuations. Yet floaters can also harm breeder performance, and by comparing population growth of a territorial population to a nonterritorial (and individually suboptimal) alternative, we can quantify the harmful effect of evolutionary conflict on population performance. Territoriality has often been found to increase population stability, but this may come at a cost of reduced equilibrium densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.