Explaining the "prior-residence effect" (automatic owner status of individuals who arrived first in an area) was one of the very first applications of game theory in animal behavior. These models, however, predict paradoxical solutions where intruders always win, with no satisfactory explanation for the absence of such cases in nature. We propose a solution based on new developments in evolutionary game theory. A self-consistent model with feedbacks between individual behavior and population dynamics produces qualitatively different frequency-dependent selection on intruders (floaters) than on territory owners. Starting with an ancestral population with no respect for ownership, the most likely evolutionary end point is complete or partial respect. Conventional rules of conflict resolution thus can rely on "uncorrelated asymmetries" without differences in resource-holding power or territory value, although they will be strengthened by such differences. We also review the empirical literature on animal contests, testing whether asymmetries in resource-holding power are required to explain the observations. Despite much empirical effort, results remain inconclusive, because experiments are often unable to distinguish between the motivation of individuals to fight and the behavioral outcome of a contest. To help arrive at conclusive answers, we suggest a standardized empirical approach to quantify prior-residence effects.
Sexual segregation is widespread throughout the animal kingdom. Although a number of hypotheses have been proposed to account for observed patterns, the generality of the mechanisms remains debated. One possible reason for this is the focus on segregation patterns in large mammals such as ungulates, where the majority of studies are descriptions of a single population. Here, we present the results of a cross‐population comparison of patterns of sexual segregation in the Trinidadian guppy, Poecilia reticulata. We relate observed patterns to experimental quantification of predation risk and sexual harassment of females by males in eight populations. We find that the degree of segregation increases with predation risk, with deeper waters becoming increasingly female biased. Furthermore, we observed that levels of male harassment are lower in deeper water but only in those rivers that contain major guppy predators. We conclude that sexual segregation in guppies is consistent with the predation risk hypothesis: sexual segregation results from a combination of predation risk driving males (the more vulnerable sex) into less risky habitats and females gaining benefits of reduced sexual harassment by remaining in high‐predation environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.