Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
We constructed maps for eight chromosomes (1, 6, 9, 10, 13, 20, X and (previously) 22), representing one-third of the genome, by building landmark maps, isolating bacterial clones and assembling contigs. By this approach, we could establish the long-range organization of the maps early in the project, and all contig extension, gap closure and problem-solving was simplified by containment within local regions. The maps currently represent more than 94% of the euchromatic (gene-containing) regions of these chromosomes in 176 contigs, and contain 96% of the chromosome-specific markers in the human gene map. By measuring the remaining gaps, we can assess chromosome length and coverage in sequenced clones.
The development of breast cancer is linked to the loss of estrogen receptor (ER) during the course of tumor progression, resulting in loss of responsiveness to hormonal treatment. The mechanisms underlying dynamic ERα gene expression change in breast cancer remain unclear. A range of physiological and biological changes, including increased adipose tissue hypoxia, accompanies obesity. Hypoxia in adipocytes can establish a pro-malignancy environment in breast tissues. Epidemiological studies have linked obesity with basal-like breast cancer risk and poor disease outcome, suggesting that obesity may affect the tumor phenotype by skewing the microenvironment toward support of more aggressive tumor phenotypes. In the present study, human SGBS adipocytes were co-cultured with ER-positive MCF7 cells for 24 h. After co-culture, HIF1α, TGF-β, and lectin-type oxidized LDL receptor 1 (LOX1) mRNA levels in the SGBS cells were increased. Expression levels of the epithelial-mesenchymal transition (EMT)-inducing transcription factors FOXC2 and TWIST1 were increased in the co-cultured MCF7 cells. In addition, the E-cadherin mRNA level was decreased, while the N-cadherin mRNA level was increased in the co-cultured MCF7 cells. ERα mRNA levels were significantly repressed in the co-cultured MCF7 cells. ERα gene expression in the MCF7 cells was decreased due to increased HIF1α in the SGBS cells. These results suggest that adipocytes can modify breast cancer cell ER gene expression through hypoxia and also can promote EMT processes in breast cancer cells, supporting an important role of obesity in aggressive breast cancer development.
BackgroundSulfotransferase 1A1 (SULT1A1) gene expression is tissue specific, with little to no expression in normal breast epithelia. Expression in breast tumors has been documented, but the transcriptional regulation of SULT1A1 in human breast tissue is poorly understood. We identified Nuclear Factor I (NFI) as a transcription factor family involved in the regulation of SULT1A1 expression.MethodsTranscription Factor Activation Profiling Plate Array assay was used to identify the possible transcription factors that regulate the gene expression of SULT1A1in normal breast MCF-10A cells and breast cancer ZR-75-1 cells. Expression levels of NFI-C and SULT1A1 were determined by real-time RT-PCR using total RNA isolated from 84 human liver samples. Expression levels of SULT1A1, NFI-A, NFI-B, NFI-C, and NFI-X were also determined in different human breast cancer cell lines (MCF-7, T-47D, ZR-75-1, and MDA-MB-231), in the transformed human epithelial cell line MCF-10A, and in ZR-75-1 cells that were transfected with siRNAs directed against NFI-A, NFI-B, NFI-C, or NFI-X for 48 h. The copy numbers of SULT1A1 in cell lines ZR-75-1, MCF-7, T-47D, MDA-MB-231, and MCF-10A were determined using a pre-designed Custom Plus TaqMan® Copy Number kit from Life Technologies.ResultsIn normal human liver samples, SULT1A1 mRNA level was positively associated with NFI-C. In different human breast cancer and normal epithelial cell lines, SULT1A1 expression was positively correlated with NFI-B and NFI-C. SULT1A1 expression was decreased 41% and 61% in ZR-75-1 cells treated with siRNAs against NFI-A and NFI-C respectively. SULT1A1 gene expression was higher in cells containing more than one SULT1A1 copy numbers.ConclusionsOur data suggests that SULT1A1 expression is regulated by NFI, as well as SULT1A1 copy number variation in human breast cancer cell lines. These data provide a mechanistic basis for the differential expression of SULT1A1 in different tissues and different physiological states of disease.
The transporter associated with antigen processing 2 (TAP2) is involved in the development of multidrug resistance and the etiology of immunological diseases. In this study, we investigated whether the expression of TAP2 can be perturbed by single nucleotide polymorphisms (SNPs) located in 3′-untranslated region (3′-UTR) of the gene via interactions with microRNAs. Using a series of in silico assays, we selected the candidate microRNAs (miRNAs) with the potential to interact with functional SNPs of TAP2. The SNP rs241456—located in the 3′-UTR of TAP2—resides in a potential binding site for hsa-miR-1270 and hsa-miR-620. HEK 293 cells, from a human kidney cell line, were used to characterize the extent of binding of miRNAs to each polymorphic allele of the SNP by a luciferase reporter gene assay. RNA electrophoretic mobility shift assays were used to evaluate the interaction between the miRNAs and each allele sequence of the SNP. We found that hsa-miR-1270 inhibited luciferase activity by binding to the T allele of the SNP in an allele-specific manner. A negative correlation was also found between the expression of hsa-miR-1270 and the T allele of the SNP in kidney tissues. Our findings support the hypothesis that hsa-miR-1270 suppresses the production of TAP2 by binding to this SNP in the 3′-UTR of this gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.