ObjectiveLimb‐girdle muscular dystrophies (LGMDs), one of the most heterogeneous neuromuscular disorders (NMDs), involves predominantly proximal‐muscle weakness with >30 genes associated with different subtypes. The clinical‐genetic overlap among subtypes and with other NMDs complicate disease‐subtype identification lengthening diagnostic process, increases overall costs hindering treatment/clinical‐trial recruitment. Currently seven LGMD clinical trials are active but still no gene‐therapy‐related treatment is available. Till‐date no nation‐wide large‐scale LGMD sequencing program was performed. Our objectives were to understand LGMD genetic basis, different subtypes’ relative prevalence across US and investigate underlying disease mechanisms.MethodsA total of 4656 patients with clinically suspected‐LGMD across US were recruited to conduct next‐generation sequencing (NGS)‐based gene‐panel testing during June‐2015 to June‐2017 in CLIA‐CAP‐certified Emory‐Genetics‐Laboratory. Thirty‐five LGMD‐subtypes‐associated or LGMD‐like other NMD‐associated genes were investigated. Main outcomes were diagnostic yield, gene‐variant spectrum, and LGMD subtypes’ prevalence in a large US LGMD‐suspected population.ResultsMolecular diagnosis was established in 27% (1259 cases; 95% CI, 26–29%) of the patients with major contributing genes to LGMD phenotypes being: CAPN3(17%), DYSF(16%), FKRP(9%) and ANO5(7%). We observed an increased prevalence of genetically confirmed late‐onset Pompe disease, DNAJB6‐associated LGMD subtype1E and CAPN3‐associated autosomal‐dominant LGMDs. Interestingly, we identified a high prevalence of patients with pathogenic variants in more than one LGMD gene suggesting possible synergistic heterozygosity/digenic/multigenic contribution to disease presentation/progression that needs consideration as a part of diagnostic modality.InterpretationOverall, this study has improved our understanding of the relative prevalence of different LGMD subtypes, their respective genetic etiology, and the changing paradigm of their inheritance modes and novel mechanisms that will allow for improved timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.
Our results strongly indicate that for molecular diagnosis of heterogeneous disorders such as NMDs, targeted panel testing has the highest clinical yield and should therefore be the preferred first-tier approach.
Disclaimer: This technical standard is designed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to this standard is voluntary and does not necessarily assure a successful medical outcome. This standard should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with this standard. They also are advised to take notice of the date any particular standard was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures. Gene sequencing panels are a powerful diagnostic tool for many clinical presentations associated with genetic disorders. Advances in DNA sequencing technology have made gene panels more economical, flexible, and efficient. Because the genes included on gene panels vary widely between laboratories in gene content (e.g., number, reason for inclusion, evidence level for gene-disease association) and technical completeness (e.g., depth of coverage), standards that address technical and clinical aspects of gene panels are needed. This document serves as a technical standard for laboratories designing, offering, and reporting gene panel testing. Although these principles can apply to multiple indications for genetic testing, the primary focus is on diagnostic gene panels (as opposed to carrier screening or predictive testing) with emphasis on technical considerations for the specific genes being tested. This technical standard specifically addresses the impact of gene panel content on clinical sensitivity, specificity, and validity-in the context of gene evidence for contribution to and strength of evidence for gene-disease association-as well as technical considerations such as sequencing limitations, presence of pseudogenes/ gene families, mosaicism, transcript choice, detection of copynumber variants, reporting, and disclosure of assay limitations.
About half of people with trisomy 21 have a congenital heart defect (CHD), whereas the remainder have a structurally normal heart, demonstrating that trisomy 21 is a significant risk factor but is not causal for abnormal heart development. Atrioventricular septal defects (AVSD) are the most commonly occurring heart defects in Down syndrome (DS), and ∼65% of all AVSD is associated with DS. We used a candidate-gene approach among individuals with DS and complete AVSD (cases = 141) and DS with no CHD (controls = 141) to determine whether rare genetic variants in genes involved in atrioventricular valvuloseptal morphogenesis contribute to AVSD in this sensitized population. We found a significant excess (p < 0.0001) of variants predicted to be deleterious in cases compared to controls. At the most stringent level of filtering, we found potentially damaging variants in nearly 20% of cases but fewer than 3% of controls. The variants with the highest probability of being damaging in cases only were found in six genes: COL6A1, COL6A2, CRELD1, FBLN2, FRZB, and GATA5. Several of the case-specific variants were recurrent in unrelated individuals, occurring in 10% of cases studied. No variants with an equal probability of being damaging were found in controls, demonstrating a highly specific association with AVSD. Of note, all of these genes are in the VEGF-A pathway, even though the candidate genes analyzed in this study represented numerous biochemical and developmental pathways, suggesting that rare variants in the VEGF-A pathway might contribute to the genetic underpinnings of AVSD in humans.
The ability of a single technology, next-generation sequencing, to provide both sequence and copy number variant (CNV) results has driven the merger of clinical cytogenetics and molecular genetics. Consequently, the distinction between the definition of a sequence variant and a CNV is blurry. As the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) standards and guidelines for interpretation of sequence variants address CNV classification only sparingly, this study focused on adapting ACMG/AMP criteria for single-gene CNV interpretation.Methods: CNV-specific modifications of the 2015 ACMG/AMP criteria were developed and their utility was independently tested by three diagnostic laboratories. Each laboratory team interpreted the same 12 single-gene CNVs using three systems: (1) without ACMG/AMP guidance, (2) with ACMG/AMP criteria, and (3) with new modifications. A replication study of 12 different CNVs validated the modified criteria.Results: The adapted criteria system presented here showed improved concordance and usability for single-gene CNVs compared with using the ACMG/AMP interpretation guidelines focused on sequence variants. Conclusion:These single-gene CNV criteria modifications could be used as a supplement to the ACMG/AMP guidelines for sequence variants, allowing for a streamlined workflow and a step toward a uniform classification system for both sequence and copy number alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.