The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.
Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-toend SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-toend models without a large amount of training data is difficult. We propose a method to reduce the data requirements of endto-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the model's ability to generalize to new phrases not heard during training.
Abstract-Recently, it was shown that if multiplicative weights are assigned to the edges of a Tanner graph used in belief propagation decoding, it is possible to use deep learning techniques to find values for the weights which improve the error-correction performance of the decoder. Unfortunately, this approach requires many multiplications, which are generally expensive operations. In this paper, we suggest a more hardwarefriendly approach in which offset min-sum decoding is augmented with learnable offset parameters. Our method uses no multiplications and has a parameter count less than half that of the multiplicative algorithm. This both speeds up training and provides a feasible path to hardware architectures. After describing our method, we compare the performance of the two neural decoding algorithms and show that our method achieves error-correction performance within 0.1 dB of the multiplicative approach and as much as 1 dB better than traditional belief propagation for the codes under consideration.
End-to-end models are an attractive new approach to spoken language understanding (SLU) in which the meaning of an utterance is inferred directly from the raw audio without employing the standard pipeline composed of a separately trained speech recognizer and natural language understanding module. The downside of end-to-end SLU is that in-domain speech data must be recorded to train the model. In this paper, we propose a strategy for overcoming this requirement in which speech synthesis is used to generate a large synthetic training dataset from several artificial speakers. Experiments on two open-source SLU datasets confirm the effectiveness of our approach, both as a sole source of training data and as a form of data augmentation.Index Termsspoken language understanding, speech synthesis, speech recognition, end-to-end spoken language understanding, backtranslation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.