Abstract-Polar codes provably achieve the symmetric capacity of a memoryless channel while having an explicit construction. The adoption of polar codes however, has been hampered by the low throughput of their decoding algorithm. This work aims to increase the throughput of polar decoding hardware by an order of magnitude relative to successive-cancellation decoders and is more than 8 times faster than the current fastest polar decoder. We present an algorithm, architecture, and FPGA implementation of a flexible, gigabit-per-second polar decoder.
The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.
Polar codes are a recently discovered family of capacity-achieving codes that are seen as a major breakthrough in coding theory. Motivated by the recent rapid progress in the theory of polar codes, we propose a semi-parallel architecture for the implementation of successive cancellation decoding. We take advantage of the recursive structure of polar codes to make efficient use of processing resources. The derived architecture has a very low processing complexity while the memory complexity remains similar to that of previous architectures. This drastic reduction in processing complexity allows very large polar code decoders to be implemented in hardware. An polar code successive cancellation decoder is implemented in an FPGA. We also report synthesis results for ASIC.
Abstract-We present a hardware architecture and algorithmic improvements for list SC decoding of polar codes. More specifically, we show how to completely avoid copying of the likelihoods, which is algorithmically the most cumbersome part of list SC decoding. The hardware architecture was synthesized for a blocklength of N = 1024 bits and list sizes L = 2, 4 using a UMC 90nm VLSI technology. The resulting decoder can achieve a coded throughput of 181 Mbps at a frequency of 459 MHz.
The recently-discovered polar codes are widely seen as a major breakthrough in coding theory. These codes achieve the capacity of many important channels under successive cancellation decoding. Motivated by the rapid progress in the theory of polar codes, we propose a family of architectures for efficient hardware implementation of successive cancellation decoders. We show that such decoders can be implemented with O(n) processing elements and O(n) memory elements, while providing constant throughput. We also propose a technique for overlapping the decoding of several consecutive codewords, thereby achieving a significant speed-up factor. We furthermore show that successive cancellation decoding can be implemented in the logarithmic domain, thereby eliminating the multiplication and division operations and greatly reducing the complexity of each processing element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.