The disposal of a high volume of waste-containing proteins is becoming increasingly challenging in a society that is aware of what is happening in the environment. The dairy industry generates several by-products that contain vast amounts of compounds, including proteins that are of industrial importance and for which new uses are being sought. This article provides a comprehensive review of the potential of the valorisation of proteins that can be recovered by chemical and/or physical processes from protein-containing milk by-products or milk surplus, particularly whey proteins or caseins. Whey proteins and casein characteristics, and applications in non-food industries, with special emphasis on the textile industry, packaging and biomedical, are reported in this review, in order to provide knowledge and raise awareness of the sustainability of these proteins to potentiate new opportunities in a circular economy context.
Nowadays, the competitiveness of the textile industry and the consumers' interest have been increasing the demand for innovative and functional textiles. Allied to this, sustainable developments are playing an increasingly important role in the textile industry. Such concerns led to a new development strategy based on the valorization of bio-based wastes and by-products of different industries, inserting this in the circular economy paradigm. These bio-based wastes and by-products come from several industries, as the agri-food industry. These resources present an enormous potential for valorization in the textile finish due to their intrinsic properties (antimicrobial, prebiotic, antioxidant activity, among others). This chapter will review the latest innovation and textile product development through different by-products and wastes, their main properties and characteristics and the advantages that they offer to the textile industry.
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the classical Stöber method and then coated with a thin layer of TiO2, followed by calcination or hydrothermal treatments. The properties of SiO2@TiO2 core-shell NPs resulted from the synergy between the photocatalytic properties of TiO2 and the adsorptive properties of SiO2. The synthesized NPs were characterized using FT-IR spectroscopy, HR-TEM, FE–SEM, and EDS. Zeta potential, specific surface area, and porosity were also determined. The results show that the synthesized SiO2@TiO2 NPs that are hydrothermally treated have similar behaviors and properties regardless of the hydrothermal treatment type and synthesis scale and better performance compared to the SiO2@TiO2 calcined and TiO2 reference samples. The generation of reactive species was determined by EPR, and the photocatalytic activity was evaluated by the methylene blue (MB) removal in aqueous solution under UV light. Hydrothermally treated SiO2@TiO2 showed the highest adsorption capacity and photocatalytic removal of almost 100% of MB after 15 min in UV light, 55 and 89% higher compared to SiO2 and TiO2 reference samples, respectively, while the SiO2@TiO2 calcined sample showed 80%. It was also observed that the SiO2-containing samples showed a considerable adsorption capacity compared to the TiO2 reference sample, which improved the MB removal. These results demonstrate the efficient synergy effect between SiO2 and TiO2, which enhances both the adsorption and photocatalytic properties of the nanomaterial. A possible photocatalytic mechanism was also proposed. Also noteworthy is that the performance of the upscaled HT1 sample was similar to one of the lab-scale synthesized samples, demonstrating the potentiality of this synthesis methodology in producing candidate nanomaterials for the removal of contaminants from wastewater.
A number of hypotheses have been proposed as causes driving female multiple mating, distinguishing between direct or indirect benefits. We tested if Schizocosa malitiosa females recognize their first sexual mates and prefer other males for re-mating. We also analyzed if characteristics of a first mating affected female decision of re-mating. In monandry group (M), 20 virgin females mated and 3-4 days after they were exposed to the same male. In polyandry group (P), 20 virgin females mated and 3-4 days after they were exposed to a different male. Fifteen males courted mated females in M and 17 males in P. Re-mating occurrence and copulatory patterns were similar in both groups, but re-matings were briefer in P than in M and showed less palpal insertions compared to first matings. We did not find any relationship between copulatory characteristics and re-mating occurrence. We found no conclusive evidence that mated S. malitiosa females select second mates according to their first mate. The causes which determine female re-mating as well as changes in re-mating patterns are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.