Climate is one of the main drivers of species distribution. However, as different environmental factors tend to co-vary, the effect of climate cannot be taken at face value, as it may be either inflated or obscured by other correlated factors. We used the favourability models of four species (Alytes dickhilleni, Vipera latasti, Aquila fasciata and Capra pyrenaica) inhabiting Spanish mountains as case studies to evaluate the relative contribution of climate in their forecasted favourability by using variation partitioning and weighting the effect of climate in relation to non-climatic factors. By calculating the pure effect of the climatic factor, the pure effects of non-climatic factors, the shared climatic effect and the proportion of the pure effect of the climatic factor in relation to its apparent effect (ρ), we assessed the apparent effect and the pure independent effect of climate. We then projected both types of effects when modelling the future favourability for each species and combination of AOGCM-SRES (two Atmosphere-Ocean General Circulation Models: CGCM2 and ECHAM4, and two Special Reports on Emission Scenarios (SRES): A2 and B2). The results show that the apparent effect of climate can be either inflated (overrated) or obscured (underrated) by other correlated factors. These differences were species-specific; the sum of favourable areas forecasted according to the pure climatic effect differed from that forecasted according to the apparent climatic effect by about 61% on average for one of the species analyzed, and by about 20% on average for each of the other species. The pure effect of future climate on species distributions can only be estimated by combining climate with other factors. Transferring the pure climatic effect and the apparent climatic effect to the future delimits the maximum and minimum favourable areas forecasted for each species in each climate change scenario.
Distribution models should take into account the different limiting factors that simultaneously influence species ranges. Species distribution models built with different explanatory variables can be combined into more comprehensive ones, but the resulting models should maximize complementarity and avoid redundancy. Our aim was to compare the different methods available for combining species distribution models. We modelled 19 threatened vertebrate species in mainland Spain, producing models according to three individual explanatory factors: spatial constraints, topography and climate, and human influence. We used five approaches for model combination: Bayesian inference, Akaike weight averaging, stepwise variable selection, updating, and fuzzy logic. We compared the performance of these approaches by assessing different aspects of their classification and discrimination capacity. We demonstrated that different approaches to model combination give rise to disparities in the model outputs. Bayesian integration was systematically affected by an error in the equations that are habitually used in distribution modelling. Akaike weights produced models that were driven by the best single factor and therefore failed at combining the models effectively. The updating and the stepwise approaches shared recalibration as the basic concept for model combination, were very similar in their performance, and showed the highest sensitivity and discrimination capacity. The fuzzy‐logic approach yielded models with the highest classification capacity according to Cohen's kappa. In conclusion: 1) Bayesian integration, employing the currently used equation, and the Akaike weight procedure should be avoided; 2) the updating and stepwise approaches can be considered minor variants of the same recalibrating approach; and 3) there is a trade‐off between this recalibrating approach, which has the highest sensitivity, and fuzzy logic, which has the highest overall classification capacity. Recalibration is better if unfavourable conditions in one environmental factor may be counterbalanced with favourable conditions in a different factor, otherwise fuzzy logic is better.
Background Over the last decade, reports about dengue cases have increase worldwide, which is particularly worrisome in South America due to the historic record of dengue outbreaks from the seventeenth century until the first half of the twentieth century. Dengue is a viral disease that involves insect vectors, namely Aedes aegypti and Ae. albopictus , which implies that, to prevent and combat outbreaks, it is necessary to understand the set of ecological and biogeographical factors affecting both the vector species and the virus. Methods We contribute with a methodology based on fuzzy logic that is helpful to disentangle the main factors that determine favorable environmental conditions for vectors and diseases. Using favorability functions as fuzzy logic modelling technique and the fuzzy intersection, union and inclusion as fuzzy operators, we were able to specify the territories at biogeographical risk of dengue outbreaks in South America. Results Our results indicate that the distribution of Ae. aegypti mostly encompasses the biogeographical framework of dengue in South America, which suggests that this species is the principal vector responsible for the geographical extent of dengue cases in the continent. Nevertheless, the intersection between the favorability for dengue cases and the union of the favorability for any of the vector species provided a comprehensive map of the biogeographical risk for dengue. Conclusions Fuzzy logic is an appropriate conceptual and operational tool to tackle the nuances of the vector-illness biogeographical interaction. The application of fuzzy logic may be useful in decision-making by the public health authorities to prevent, control and mitigate vector-borne diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.