Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.Bacteroidetes ͉ marine bacteria ͉ whole-genome analysis ͉ heterotrophic CO2 fixation
Athalassohaline lakes are inland saline aquatic environments with ionic proportions quite different from the dissolved salts in seawater. Prokaryotes inhabiting athalassohaline environments are poorly known and very few of such places have been surveyed for microbial diversity studies around the world. We analyzed the planktonic bacterial and archaeal assemblages inhabiting several of these evaporitic basins in a remote and vast area in northern Chile by PCR-denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene fragments. Most systems were springs and athalassohaline ponds in different saltflats of the Atacama Desert region, including Salar de Llamará (in the Central Depression), Salar de Atacama (in the Pre-Andean Depression) and Salar de Ascotán (in the Altiplano). Overall, we analyzed more than 25 samples from 19 different environments with strong gradients of altitude, qualitative ionic compositions and UV influence. Between 4 and 25 well-defined DGGE bands were detected for Bacteria in each sample, whereas Archaea ranged between 1 and 5. Predominant DGGE bands (defined by intensity and frequency of appearance) were excised from the gel and sequenced. Bacterial assemblages were dominated by the Cytophaga-Flavobacterium-Bacteroides (CFB) phylum and a few Proteobacteria. There was a tendency for increasing contribution of CFB with higher salinities and altitude. Thus, CFB accounted for the major fraction of band intensity in the Ascotán samples and for lower percentages in Atacama and Llamará. When the distribution of particular CFB sequences was examined, there were several relatives of Psychroflexus torquis substituting each other as salinity changed in Ascotán. Another set of CFB sequences, very distantly related to Cytophaga marinovorus, was abundant in both Llamará and Atacama at salinities lower than 7%. Archaeal assemblages were dominated by uncultured haloarchaea distantly related to cultured strains mostly obtained from thalassohaline environments. Most of the archaeal sequences did not have a close match with environmental 16S rRNA genes deposited in the database either. Therefore, athalassohaline environments are excellent sources of new microorganisms different from their counterparts in thalassohaline sites and useful tools to relate microbial genetic diversity and environmental characteristics such as changes in salinity (both qualitative and quantitative) and altitude.
Lake Tebenquiche is one of the largest saline water bodies in the Salar de Atacama at 2,500 m above sea level in northeastern Chile. Bacteria inhabiting there have to deal with extreme changes in salinity, temperature and UV dose (i.e., high environmental dissimilarity in the physical landscape). We analyzed the bacterioplankton structure of this lake by 16S rRNA gene analyses along a spatio-temporal survey. The bacterial assemblage within the lake was quite heterogeneous both in space and time. Salinity changed both in space and time ranging between 1 and 30% (w/v), and total abundances of planktonic prokaryotes in the different sampling points within the lake ranged between two and nine times 10(6) cells mL(-1). Community composition changed accordingly to the particular salinity of each point as depicted by genetic fingerprinting analyses (denaturing gradient gel electrophoresis), showing a high level of variation in species composition from place to place (beta-diversity). Three selected sites were analyzed in more detail by clone libraries. We observed a predominance of Bacteroidetes (about one third of the clones) and Gammaproteobacteria (another third) with respect to all the other bacterial groups. The diversity of Bacteroidetes sequences was large and showed a remarkable degree of novelty. Bacteroidetes formed at least four clusters with no cultured relatives in databases and rather distantly related to any known 16S rRNA sequence. Within this phylum, a rich and diverse presence of Salinibacter relatives was found in the saltiest part of the lake. Lake Tebenquiche included several novel microorganisms of environmental importance and appeared as a large unexplored reservoir of unknown bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.