In order to provide a contribution to future studies of foxtail millet (Setaria italica), the drying kinetics of the seeds was investigated at three different temperatures: 44, 65 and 86°C. The seeds of S. italica with a moisture equal to 30% in dry basis were dried in a conical-cylindrical spouted bed during an interval of 132 min. Some empirical mathematical models were selected to describe the experimental drying kinetics data (Lewis, Henderson and Pabis, Page, Diffusion approach, Midilli and Wang and Singh) and the best models were chosen according to the statistical tests results (coefficient of determination, mean relative percent deviation, mean square root error and residue distribution), using the software Statistica® 7.0 and applying the Quasi-Newton method. Only the decreasing rate period was observed in the drying kinetic curves, indicating that the removal of moisture content was preferably by the diffusion mechanism, which is a characteristic behavior of fibrous products, like the agricultural products. The models of Diffusion Aproach, Page and Midilli were the most suitable to describe the experimental drying curves.
Processing of particles in a moving bed, such as a fluidized bed or a spouting bed, is commonly used in the operations of drying, coating, and granulation of particulate systems. This process has applications in the chemical, pharmaceutical and, presently, agronomical industries, especially for seed treatment/coating. This research aimed to analyze the fluid-dynamic behavior of fluidized and spouting beds with different air temperatures and loads of flaxseeds (Linum usitatissimum L.), with estimates of the fluid-dynamic parameters correlated to each process. The parameters were compared with the values obtained from classical correlations in the literature, with indications of associated percentages of deviation. Influence of fluid dynamics on the physiological quality of seeds was assessed by germination tests and the germination speed index. An analysis of the results indicated that seed processing was adequate for processing in dynamically active beds; however, temperatures above 50ºC in both beds caused significant reductions in the physiological quality of the seeds. Processing in a fluidized bed presented a smaller reduction of the physiological properties of the flaxseed.
Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição 4.0 Internacional (CC BY 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.