Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized as the major bacterial agent responsible for food-transmitted gastroenteritis. The most effective antimicrobials against Campylobacter are macrolides and some, but not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside O-nucleotidyltransferases. The presence of streptomycin resistance genes was evaluated among streptomycin-resistant Campylobacter isolated from humans and animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible combinations with a major fraction of the isolates carrying a previously described ant-like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown by gene transfer and phenotype expression in Escherichia coli, unlike detected coding sequences in C. jejuni that were truncated by an internal frame shift associated to RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans, suggesting a circulation pathway of Campylobacter strains by consuming contaminated calf meat by bacteria expressing this streptomycin resistance element.
Campylobacter is one of the most important microorganisms responsible for foodborne diseases in the EU. In this study, we investigated resistance to tetracycline in 139 Campylobacter jejuni and Campylobacter coli samples isolated from human clinical cases. From these, 110 were resistant to tetracycline, with MIC (minimal inhibitory concentration) varying in a range of 1 to >512 μg/mL, and 109 (78.4%) carried tet(O), a gene that confers resistance to tetracycline through the expression of a protein that confers protection to the ribosome. Amongst the tetracycline-resistant isolates, one C. jejuni (HCC30) was the only tet(O)-negative sample, presenting an MIC of 256 μg/mL. Instead, the mosaic gene tet(O/M/O) was found in HCC30 and, as far as we know, this is the first description of this chimeric gene originating from homologous recombination between tet(O) and tet(M). The previously described mosaic gene tet(O/32/O), also found in Campylobacter, presents a chimeric structure very similar to that of tet(O/M/O), affecting domains II and III of encoded proteins distantly related to the elongation factor G (EF-G). The tet(O/M/O) mosaic gene has been found in nucleotide databases in several genomes of Campylobacter isolated from different origins, indicating its frequent acquisition, even though it can be undetected through screening by PCR with specific tet(O) primers. In this work, we address the improvement of classical PCR to efficiently diagnose the most prevalent tetracycline resistance determinants in Campylobacter, including tet(O/M/O), which should be taken into account in the optimization of campylobacteriosis treatments.
A screening of antimicrobial resistance and its genetic determinants has been performed on 300 Salmonella enterica isolates collected during 2004-2008 from human infections in Spain. Salmonella Typhimurium and Salmonella Enteritidis were the major serotypes, which were found with similar frequencies covering 80% of the bacterial collection. Salmonella Typhimurium isolates frequently shared low susceptibility to antimicrobials of the penta-resistance phenotype (ACSSuT) and/or cephalosporin resistance. The ACSSuT profile was found closely linked to int1-associated gene cassettes, with major elements carrying DNA fragments of 1.0 Kb (aadA2 gene) plus 1.2 Kb (blaPSE-1 gene) or 2.0 Kb (aadA1 and blaOXA-1 genes). Among these, ACSSuT and cephalosporin resistances were associated in Salmonella Typhimurium isolates expressing the blaOXA gene. β-lactamase activities were also detected from isolates carrying blaTEM, blaCMY, or blaSHV, although only the two last genes expressed extended-spectrum β-lactamases. The clonal analysis of S. enterica strains suggests that both horizontal and vertical transfer mechanisms are involved in the wide dissemination of their antimicrobial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.