In the last few years the awareness of consumers and institutions about the impact that our industrial processes has on health and the environment has increased, demanding more natural products. In this work, a multifunctional bioactive extract with surfactant and antioxidant properties, composed mainly of C16 and C18 fatty acids, and phenolic compounds (vanillic acid, p-coumaric acid, ferulic acid, sinapic acid and quercetin) was obtained from corn steep liquor (CSL). Different liquid-liquid extraction protocols were evaluated obtaining a natural extract, which was able to reduce the surface tension of water by more than 30 units, showing antioxidant activity with an EC50 of 8.51 mg mL(-1) and a yield of 6.85 g of extract per kg of CSL. Additionally, it was observed that after liquid-liquid extraction with chloroform, the aqueous phase can be subjected to a hydrothermal treatment, followed by extraction with ethyl acetate, in order to obtain another extract (24.7 g of extract per kg of CSL) with a higher antioxidant capacity (EC50 of 4.02 mg mL(-1)). In this case the antioxidant extract is composed of protocatechuic acid, vanillic acid, caffeic acid, epicatechin, p-coumaric acid, ferulic acid, sinapic acid and quercetin.
The antimicrobial and anti-adhesive activities of the cell-bound biosurfactants, produced by Lactobacillus pentosus (PEB), characterized as glycolipopeptide macromolecules, were evaluated against several microorganisms present in the skin microflora, envisaging its potential use as a "natural" ingredient in cosmetic and personal care formulations. Their performance was compared with another cell-bound biosurfactants also characterized as glycolipopeptides produced by Lactobacillus paracasei (PAB). At concentrations of 50mg/mL, the PEB showed an important antimicrobial activity against Pseudomonas aeruginosa (85% when extracted with phosphate buffer (PB) and 100% when extracted with phosphate buffer saline (PBS)), Streptococcus agalactiae (100% for both extracts), Staphylococcus aureus (67% when extracted with PBS and 100% when extracted with PB), Escherichia coli (72% when extracted with PB and 89% when extracted with PBS), Streptococcus pyogenes (about 85% for both extracts) and Candida albicans (around 70% for both extracts), comparable with that obtained for the PAB. However, at lower concentrations the PAB exhibited in general higher antimicrobial activities. Biosurfactants produced by both microorganisms also showed significant anti-adhesive properties against all the microorganisms under study, except for E. coli and C. albicans (less than 30%). Overall, these cell-bound biosurfactants could be used as potential antimicrobial and anti-adhesive agents in cosmetic and pharmaceutical formulations.
Depending on their ionic nature, biosurfactants can be classified as nonionic, anionic, cationic, or amphoteric. The ionic behavior of biosurfactants is an important characteristic that dictates their use in industrial applications. In this work, a biosurfactant extract obtained from corn steep liquor was subjected to anionic or cationic resins, in order to study the ionic behavior under different operational conditions using response surface methodology. The independent variables included in the study are the dilution of biosurfactant solution, the amount of cationic or anionic resin, and the extraction time, whereas the dependent variables studied consisted of the surface tension of biosurfactant aqueous solution, after contacting with anionic or cationic resin. The results showed that biosurfactant extracted from corn steep liquor is amphoteric, since both resins were able to entrap this biosurfactant, making it particularly suited for use in personal care preparations for sensitive skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.