Subsea pipelines and umbilicals are used for the transportation of fluids and electrical power between subsea installations and floating production systems (FPUs). The installation and maintenance of these systems can be expensive. In a conventional subsea field development, the produced fluids can be transported from the well to a FPU where they can be offloaded to a tanker (surface ship). In the case of carbon dioxide (CO2) injection into the well, the direction of flow is reversed, i.e., CO2 flows from the tanker to the FPU, down the riser base and through the subsea pipelines to the well. This offloading process is weather-dependent and cannot be performed in severe weather conditions, i.e., strong winds and large waves. This paper presents a novel subsea shuttle tanker system proposed by Equinor ASA designed to be a possible alternative to subsea pipelines, umbilicals and tanker ships. The subsea shuttle is intended to operate submerged under the sea surface to transport liquid CO2 from an existing offshore/land facility where CO2 is captured to a subsea well where the CO2 is injected into the reservoir. As the shuttle is subsea, it can operate under any type of weather conditions. Even though the subsea shuttle is proposed as a vehicle for liquid CO2 transport, it can also transport other types of cargo such as hydrocarbons, injection fluids, electrical power or subsea tools. The paper will discuss the most important design considerations surrounding the subsea shuttle tanker.
Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calibrated to a target failure probability obtained by SRA. This applies both to extreme load situations and also to a structural system under the influence of a time dependent degradation process such as fatigue. The current analysis methods suggested for service life estimation of subsea wells are deterministic, and these analyses are associated with high sensitivity to variations in input parameters. Thus sensitivity screening is often recommended for certain input parameters, and the worst case is then typically used as a basis for the analysis. The associated level of conservatism embedded in results from a deterministic analysis is not quantified, and it is therefore difficult to know and to justify if unnecessary conservatism can be removed from the calculations. By applying SRA to a wellhead fatigue analysis, the input parameters are accounted for with their associated uncertainty given by probability distributions. Analysis results can be generated by use of Monte-Carlo simulations or FORM/SORM (first/second order reliability methods), accounting for the full scatter of system relations and input variations. The level of conservatism can then be quantified and evaluated versus an acceptable probability of failure. This article presents results from a SRA of a fictitious but still realistic well model, including the main assumptions that were made, and discusses how SRA can be applied to a wellhead fatigue analysis. Global load analyses and local stress calculations were carried out prior to the SRA, and a response surface technique was used to interpolate on these results. This analysis has been limited to two hotspots located in each of the two main load bearing members of the wellhead system. The SRA provides a probability of failure estimate that may be used to give better decision support in the event of life extension of existing subsea wells. In addition, a relative uncertainty ranking of input variables provides insight into the problem and knowledge about where risk reducing efforts should be made to reduce the uncertainty. It should be noted that most attention has been given to the method development, and that more comprehensive analysis work and assessment of specific input is needed in a real case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.