Parkinson’s disease (PD) is one of the most common progressive neurodegenerative diseases. Clinical and epidemiological studies indicate that sex differences, as well as genetic components and ageing, can influence the prevalence, age at onset and symptomatology of PD. This study undertook a systematic meta-analysis of substantia nigra microarray data using the Transcriptome Mapper (TRAM) software to integrate and normalize a total of 10 suitable datasets from multiple sources. Four different analyses were performed according to default parameters, to better define the segments differentially expressed between PD patients and healthy controls, when comparing men and women data sets. The results suggest a possible regulation of specific sex-biased systems in PD susceptibility. TRAM software allowed us to highlight the different activation of some genomic regions and loci involved in molecular pathways related to neurodegeneration and neuroinflammatory mechanisms.
Chromosomal translocations involving the MLL gene on 11q23 present frequent abnormalities in pediatric, adult and therapy-related acute leukemias, and are generally associated with aggressive disease and poor prognosis. Here, we report bioluminescent acute leukemia xenograft mouse models of the most frequent and aggressive MLL-related acute leukemias (infant and adult MLL-AF9, MLL-ENL, MLL-AF4). Four acute leukemia cell lines carrying MLL-related translocations were stably transduced with a firefly luciferase transgene and injected intravenously into NOD/SCID mice. Leukemia progression was monitored by in vivo bioluminescence imaging (BLI). All mice developed MLL-related acute leukemia. The four MLL-related acute leukemia models showed a different course of infant and adult MLL-AF9 acute myeloid leukemia, and a rapid aggressiveness of MLL-ENL acute lymphoblastic leukemia and MLL-AF4 acute biphenotypic leukemia. Tissue analysis and RT-PCR of bone marrow, spleen and liver from the mice confirmed the BL results. To validate BLI for the detection of a therapeutic response, systemic treatment with an anti-luciferase-targeting siRNA (siLuc) complexed with cationic nanoparticles was administered to mice with MLL-AF4 acute lymphoblastic leukemia. The BLI signal showed a reduction following treatment with siLuc compared to the control mice. These mouse models present MLL-related acute leukemia evolution similar to the human counterparts. Moreover, they are non-invasive, rapid and sensitive models, suitable for the in vivo study of MLL-related acute leukemias. Finally, BLI showed in vivo luminescence down modulation obtained by systemic treatment with luciferase-targeting siRNA nanoparticle complexes, confirming that these MLL-related leukemia mouse models are optimal for the evaluation and selection of delivery systems for siRNA and other new biotechnological pharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.