Purpose: A crowd of pedestrians is a complex system in which individuals exhibit conflicting behavioural mechanisms leading to self-organisation phenomena. Computer models for the simulation of crowds represent a consolidated type of application, employed on a day-to-day basis to support designers and decision makers. Most state of the art models, however, generally do not consider the explicit representation of pedestrians aggregations (groups) and their implications on the overall system dynamics. This work is aimed at discussing a research effort systematically exploring the potential implication of the presence of groups of pedestrians in different situations (e.g. changing density, spatial configurations of the environment). Methods: The paper describes an agent-based model encompassing both traditional individual motivations (i.e. tendency to stay away from other pedestrians while moving towards the goal) and an adaptive mechanism representing the influence of group presence in the simulated population. The mechanism is designed to preserve the cohesion of specific types of groups (e.g. families and friends) even in high density and turbulent situations. The model is tested in simplified scenarios to evaluate the implications of modelling choices and the presence of groups. Results: The model produces results in tune with available evidences from the literature, both from the perspective of pedestrian flows and space utilisation, in scenarios not comprising groups; when groups are present, the model is able to preserve their cohesion even in challenging situations (i.e. high density, presence of a counterflow), and it produces interesting results in high density situations that call for further observations and experiments to gather empirical data. Conclusions: The introduced adaptive model for group cohesion is effective in qualitatively reproducing group related phenomena and it stimulates further research efforts aimed at gathering empirical evidences, on one hand, and modelling efforts aimed at reproducing additional related phenomena (e.g. leader-follower movement patterns).
Pedestrian simulation is a consolidated area of application in which agent-based models are often employed; successful case studies are described in the literature and commercial, off-the-shelf simulators are commonly employed by decision makers and consultancy companies. Most state-of-the-art models, however, generally do not consider the explicit representation of pedestrians aggregations (groups) and their implications on the overall system dynamics. This work is aimed at discussing the relevance and significance of this research effort with respect to the need of empirical data about the implication of the presence of groups of pedestrians in different situations (e.g., changing density, spatial configurations of the environment). The article describes an agent-based model encompassing both traditional individual motivations (i.e., tendency to stay away from other pedestrians while moving toward the goal) and a simplified mechanism considering the cohesion effects related to the presence of groups in the crowd. The model is tested in a simple scenario to evaluate the implications of some modeling choices and the presence of groups in the simulated scenario. Moreover, the model is applied in a real-world scenario characterized by the presence of organized groups as an instrument for crowd management. Results are discussed and compared to experimental observations and to data available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.