No information exists on phototrophs growing on the stone surfaces of the Catacombs of SS. Marcellino and Pietro (the site was only recently opened to the public in 2014). Therefore, it was decided to characterise the microbial communities and to compare them with those of the other previously studied catacombs. Moreover, a new non-invasive strategy to reduce the phototrophic growth was tested. Phototrophic microorganisms were investigated under light and confocal laser scanning microscopes from samples collected non-invasively in situ. Tests were carried out to determine the effect of the application of two essential oils (from L. angustifolia and T. vulgaris) on biofilm photosynthetic activity. Laser-induced fluorescence (LIF) and reflectance measurements in the visible range have been used to evaluate respectively, any chemical modification and discolouration on a frescoed stone that may occur after the application of the essential oils. At all the concentrations of essential oils, there was a quasi-immediate, large reduction in photosynthetic activity of the biofilms. At 10% essential oil concentration, there was no detectable photosynthetic activity after 15 min. At 1%, there was a need for two applications and after 5-day activity was undetectable. No effect of the essential oils on the substrate surface properties or colour modification of the fresco has been observed with the LIF prototype. Cyanobacterial typical of Roman catacombs were present in the sites investigated. Innovative and non-destructive strategies, involving the application of a combination of two essential oils, have been successfully tested and developed to prevent biodeterioration of these sites.
This work focused on the potential of Desmodesmus sp. to be employed for wastewater bioremediation and biodiesel production. The green microalga was grown in a culture medium with a phosphorus (P) content of 4.55 mg L simulating an industrial effluent; it was also exposed to a bimetal solution of copper (Cu) and nickel (Ni) for 2 days. P removal was between 94 and 100%. After 2 days of exposure to metals, 94% of Cu and 85% of Ni were removed by Desmodesmus sp. Adsorption tests showed that the green microalga was able to remove up to 90% of Cu and 43% of Ni in less than 30 min. The presence of metals decreased the lipid yield, but biodiesel quality from the biomass obtained from metal exposed samples was higher than that grown without metals. This result revealed that this technology could offer a new alternative solution to environmental pollution and carbon-neutral fuel generation.
This paper reports functional studies on the enzyme phytochelatin synthase in the liverwort Marchantia polymorpha and the cyanobacterium Geitlerinema sp. strain PCC 7407. In vitro activity assays in control samples (cadmium-untreated) showed that phytochelatin synthase was constitutively expressed in both organisms. In the presence of 100 µM cadmium, in both the liverwort and the cyanobacterium, the enzyme was promptly activated in vitro, and produced phytochelatins up to the oligomer PC4. Likewise, in vivo exposure to 10–36 µM cadmium for 6-120 h induced in both organisms phytochelatin synthesis up to PC4. Furthermore, the glutathione (GSH) levels in M. polymorpha were constitutively low (compared with the average content in higher plants), but increased considerably under cadmium stress. Conversely, the GSH levels in Geitlerinema sp. PCC 7407 were constitutively high, but were halved under metal treatments. At odds with former papers, our results demonstrate that, as in M. polymorpha and other plants, the cyanobacterial phytochelatin synthase exposed to cadmium possesses manifest transpeptidasic activity, being able to synthesize phytochelatins with a degree of oligomerization higher than PC2. Therefore, prokaryotic and eukaryotic phytochelatin synthases differ less in functional terms than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.