Cannabidiol (CBD)-based oil preparations are becoming extremely popular, as CBD has been shown to have beneficial effects on human health. CBD-based oil preparations are not unambiguously regulated under the European legislation, as CBD is not considered as a controlled substance. This means that companies can produce and distribute CBD products derived from non-psychoactive hemp varieties, providing an easy access to this extremely advantageous cannabinoid. This leaves consumers with no legal quality guarantees. The objective of this project was to assess the quality of 14 CBD oils commercially available in European countries. An in-depth chemical profiling of cannabinoids, terpenes and oxidation products was conducted by means of GC-MS and HPLC-Q-Exactive-Orbitrap-MS in order to improve knowledge regarding the characteristics of CBD oils. Nine out of the 14 samples studied had concentrations that differed notably from the declared amount, while the remaining five preserved CBD within optimal limits. Our results highlighted a wide variability in cannabinoids profile that justifies the need for strict and standardized regulations. In addition, the terpenes fingerprint may serve as an indicator of the quality of hemp varieties, while the lipid oxidation products profile could contribute in evaluation of the stability of the oil used as milieu for CBD rich extracts.
Cannabis sativa L. has been cultivated throughout the world for industrial and medical purposes and is the most controversial plant ever exploited, with considerable discrepancies in the praise and disapproval it receives. Medical Cannabis prescriptions are on the increase in several countries where its therapeutic use is authorised due to its positive role in treating several pathologies even if it represents a multifaceted reality in terms of application. There are at least 550 identified compounds in C. sativa L., including more than 100 phytocannabinoids and 120 terpenes. The chemical complexity of its bioactive constituents highlights the need for standardised and well-defined analytical approaches able to characterise plant chemotype and herbal drug quality as well as to monitor the quality of pharmaceutical cannabis extracts and preparations. This research highlights the potential of using different analytical procedures involving the combination of headspacesolid-phase microextraction (HS-SPME) coupled to GC-MS and accelerated solvent extraction (ASE) coupled to high resolution mass-spectrometry (HPLC-Q Orbitrap®) for the indepth profiling of quality traits in authorised medical varieties of Cannabis sativa L. flos (Bediol®) and corresponding macerated oil preparations. This approach could add new knowledge to the field of "omic" analytical applications which are fundamental nowadays for Cannabis used for therapeutic remedies.
The purpose of this analytical study was to develop an advanced formulation of medical Cannabis oil (MCO) comparing the chemical profile of different extracts obtained with two existing methods (SIFAP and CALVI) and one original upgraded (CERFIT) method. Preparation methods were applied with varying solvent, temperature, and duration of the decarboxylation and extraction steps. HPLC-MS/MS TSQ and GC/FID-HS analyses were performed to investigate cannabinoid and terpene contents in the three oil extracts. Cannabinoids profile remained comparable between the formulations. CERFIT extracts exhibited a superior quantity of total terpene hydrocarbon forms (e.g., limonene and α-pinene) with no degradation occurrence (i.e., oxidized terpenes not quantifiable). Thus, this new method optimized the phytochemical profile of the MCO presenting a value opportunity to obtain a standardized high-level therapeutic product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.