Regularization of the classical Laplacian matrices was empirically shown to improve spectral clustering in sparse networks. It was observed that small regularizations are preferable, but this point was left as a heuristic argument. In this paper we formally determine a proper regularization which is intimately related to alternative stateof-the-art spectral techniques for sparse graphs.
This article considers the problem of community detection in sparse dynamical graphs in which the community structure evolves over time. A fast spectral algorithm based on an extension of the Bethe-Hessian matrix is proposed, which benefits from the positive correlation in the class labels and in their temporal evolution and is designed to be applicable to any dynamical graph with a community structure. Under the dynamical degree-corrected stochastic block model, in the case of two classes of equal size, we demonstrate and support with extensive simulations that our proposed algorithm is capable of making non-trivial community reconstruction as soon as theoretically possible, thereby reaching the optimal detectability threshold and provably outperforming competing spectral methods.Preprint. Under review.1 In order to design their dynamical non-backtracking matrix, the average number of connections among nodes in the same and across communities must be known. 2 The algorithm a priori requires that η be known; otherwise, η can be estimated through cross-validation. The number of communities instead, is not required as an input of the algorithm.
Latent order book models have allowed for significant progress in our understanding of price formation in financial markets. In particular they are able to reproduce a number of stylized facts, such as the square-root impact law. An important question that is raised-if one is to bring such models closer to real market data-is that of the connection between the latent (unobservable) order book and the real (observable) order book. Here we suggest a simple, consistent mechanism for the revelation of latent liquidity that allows for quantitative estimation of the latent order book from real market data. We successfully confront our results to real order book data for over a hundred assets and discuss market stability. One of our key theoretical results is the existence of a market instability threshold, where the conversion of latent order becomes too slow, inducing liquidity crises. Finally we compute the price impact of a metaorder in dierent parameter regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.