A first synoptic and trans-domain overview of plankton dynamics was conducted across the aquatic sites belonging to the Italian Long-Term Ecological Research Network (LTER-Italy). Based on published studies, checked and complemented with unpublished information, we investigated phytoplankton and zooplankton annual dynamics and long-term changes across domains: from the large subalpine lakes to mountain lakes and artificial lakes, from lagoons to marine coastal ecosystems. This study permitted identifying common and unique environmental drivers and ecological functional processes controlling seasonal and long-term temporal course. The most relevant patterns of plankton seasonal succession were revealed, showing that the driving factors were nutrient availability, stratification regime, and freshwater inflow. Phytoplankton and mesozooplankton displayed a wide interannual variability at most sites. Unidirectional or linear long-term trends were rarely detected but all sites were impacted across the years by at least one, but in many case several major stressor(s): nutrient inputs, meteo-climatic variability at the local and regional scale, and direct human activities at specific sites. Different climatic and anthropic forcings frequently co-occurred, whereby the responses of plankton communities were the result of this environmental complexity. Overall, the LTER investigations are providing an unparalleled framework of knowledge to evaluate changes in the aquatic pelagic systems and management options.
Phytoplankton play a pivotal role in global biogeochemical and trophic processes and provide essential ecosystem services. However, there is still no broad consensus on how and to what extent their community composition responds to environmental variability. Here, high-frequency oceanographic and biological data collected over more than 25 years in a coastal Mediterranean site are used to shed light on the temporal patterns of phytoplankton species and assemblages in their environmental context. Because of the proximity to the coast and due to large-scale variations, environmental conditions showed variability on the short and long-term scales. Nonetheless, an impressive regularity characterised the annual occurrence of phytoplankton species and their assemblages, which translated into their remarkable stability over decades. Photoperiod was the dominant factor related to community turnover and replacement, which points at a possible endogenous regulation of biological processes associated with species-specific phenological patterns, in analogy with terrestrial plants. These results highlight the considerable stability and resistance of phytoplankton communities in response to different environmental pressures, which contrast the view of these organisms as passively undergoing changes that occur at different temporal scales in their habitat, and show how, under certain conditions, biological processes may prevail over environmental forcing.
The emergence of new species is poorly understood in marine plankton, where the lack of physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here we combine molecular and ecological information from a long term time series and propose Pseudo-nitzschia allochrona, a new cryptic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, LSU and ITS rDNA fragments and rbcL) and is reproductively isolated from its closest relative, which is morphologically identical. Data from a long term plankton time series show P.allochrona invariably occurring in summer-autumn in the Gulf of Naples, where its sister species are instead found in winter-spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco-evolutionary dynamics of marine microorganisms
The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long‐term time series and propose Pseudo‐nitzschia allochrona , a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbc L) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis . Data from a long‐term plankton time series show P. allochrona invariably occurring in summer–autumn in the Gulf of Naples, where its closely related species P. arenysensis , P. delicatissima , and P. dolorosa are instead found in winter–spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona , which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco‐evolutionary dynamics of marine microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.