Machine learning is becoming an appealing tool in various fields of earth sciences, especially in resources estimation. Six machine learning algorithms have been used to predict the presence of gold mineralization in drill core from geophysical logs acquired at the Lalor deposit, Manitoba, Canada. Results show that the integration of a set of rock physical properties — measured at closely spaced intervals along the drill core — with ensemble machine learning algorithms allows the detection of gold-bearing intervals with an adequate rate of success. Since the resulting prediction is continuous along the drill core, the use of this type of tool in the future will help geologists in selecting sound intervals for assay sampling and in modeling more continuous ore bodies during the entire life of a mine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.