A numerical method, suitable for the simulation of the time evolution of quantum spin models of arbitrary lattice dimension, is presented. The method combines sampling of the Wigner function with evolution equations obtained from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. Going to higher orders of the BBGKY hierarchy allows for a systematic refinement of the method. Quantum correlations are treated through both, the Wigner function sampling and the BBGKY evolution, bringing about highly accurate estimates of correlation functions. The method is particularly suitable for long-range interacting systems, and we demonstrate its power by comparing with exact results as well as other numerical methods. As an application we compute spin squeezing in a two-dimensional lattice with power-law interactions and a transverse field, which should be accessible in future ion trap experiments.
We investigate how to coherently define entropy production for a process of transient relaxation in the Quantum Brownian Motion model for the harmonic potential. We compare a form, called "Poised" (P), which after non-Markovian transients corresponds to a definition of heat as the change in the system Hamiltonian of mean force, with a recent proposal by Esposito et al (ELB) based on a definition of heat as the energy change in the bath. Both expressions yield a positive-defined entropy production and coincide for vanishing coupling strength, but their difference is proved to be always positive (after non-Markovian transients disappear) and to grow as the coupling strength increases. In the classical over-damped limit the "Poised" entropy production converges to the entropy production used in stochastic thermodynamics. We also investigate the effects of the system size, and of the ensuing Poincaré recurrences, and how the classical limit is approached. We close by discussing the strong-coupling limit, in which the ideal canonical equilibrium of the bath is violated.
Scattering of classical light by atomic clouds induces photon-mediated
effective long-range interactions between the atoms and leads to cooperative
effects even at low atomic densities. We introduce a novel simulation technique
that allows us to investigate the quantum regime of the dynamics of large
clouds of atoms. We show that the fluorescence spectrum of the cloud can be
used to probe genuine quantum cooperative effects. Signatures of these effects
are the occurrence, and the scaling behavior, of additional sidebands at twice
the frequency of the classical Mollow sidebands, as well as an asymmetry of the
Mollow triplet
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.