Failures in milk coagulation during cheese manufacturing can lead to decreased yield, anomalous behaviour of cheese during storage, significant impact on cheese quality and process wastes. This study proposes a Process Analytical Technology approach based on FT-NIR spectroscopy for milk renneting control during cheese manufacturing. Multivariate Curve Resolution optimized by Alternating Least Squares (MCR-ALS) was used for data analysis and development of Multivariate Statistical Process Control (MSPC) charts. Fifteen renneting batches were set up varying temperature (30, 35, 40 °C), milk pH (6.3, 6.5, 6.7), and fat content (0.1, 2.55, 5 g/100 mL). Three failure batches were also considered. The MCR-ALS models well described the coagulation processes (explained variance ≥99.93%; lack of fit <0.63%; standard deviation of the residuals <0.0067). The three identified MCR-ALS profiles described the main renneting phases. Different shapes and timing of concentration profiles were related to changes in temperature, milk pH, and fat content. The innovative implementation of MSPC charts based on T2 and Q statistics allowed the detection of coagulation failures from the initial phases of the process.
The dairy industry is continuously developing new strategies to obtain healthier dairy products preserving expected properties. However, when modifying a food process, the reassessment of each parameters and their interaction should be considered as highly influencing the final quality. Among others, rennet process features are fundamental for both sensory properties and typical characteristics of a cheese. In this contest, the research addresses the development of a FT-NIR spectroscopic method, coupled with chemometrics, for the study of the effect of process variables on milk renneting. The effects of temperature (30 °C, 35 °C, 40 °C), milk fat concentration (0.1, 2.55, 5 g/100 mL), and pH (6.3, 6.5, 6.7) were investigated by means of a Box-Behnken experimental design. FT-NIR data collected along the 17 trials were explored by interval-PCA (i-PCA) and ANOVA-Simultaneous Component Analysis (ASCA). i-PCA revealed differences in the occurrence and trends of coagulation phases, related to the three considered factors. ASCA allowed the characterization of renneting evolution and the assessment of the factor role, demonstrating that main and interaction effects are significant for the process progress. The proposed approach demonstrated that i-PCA and ASCA on FT-NIR data, highlighting the effects of the operating factors, allow a rapid and accurate analysis of process modifications in cheese manufacturing.
The study proposes a process analytical technology (PAT) approach for the control of milk coagulation through near infrared spectroscopy (NIRS), computing multivariate statistical process control (MSPC) charts, based on principal component analysis (PCA). Reconstituted skimmed milk and commercial pasteurized skimmed milk were mixed at two different ratios (60:40 and 40:60). Each mix ratio was prepared in six replicates and used for coagulation trials, monitored by fundamental rheology, as a reference method, and NIRS by inserting a probe directly in the coagulation vat and collecting spectra at two different acquisition times, i.e., 60 s or 10 s. Furthermore, three failure coagulation trials were performed, deliberately changing temperature or rennet and CaCl2 concentration. The comparison with fundamental rheology results confirmed the effectiveness of NIRS to monitor milk renneting. The reduced spectral acquisition time (10 s) showed data highly correlated (r > 0.99) to those acquired with longer acquisition time. The developed decision trees, based on PC1 scores and T2 MSPC charts, confirmed the suitability of the proposed approach for the prediction of coagulation times and for the detection of possible failures. In conclusion, the work provides a robust but simple PAT approach to assist cheesemakers in monitoring the coagulation step in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.