Synchronization is crucial for the correct functionality of many natural and man-made complex systems. In this work we characterize the formation of synchronization patterns in networks of Kuramoto oscillators. Specifically, we reveal conditions on the network weights and structure and on the oscillators' natural frequencies that allow the phases of a group of oscillators to evolve cohesively, yet independently from the phases of oscillators in different clusters. Our conditions are applicable to general directed and weighted networks of heterogeneous oscillators. Surprisingly, although the oscillators exhibit nonlinear dynamics, our approach relies entirely on tools from linear algebra and graph theory. Further, we develop a control mechanism to determine the smallest (as measured by the Frobenius norm) network perturbation to ensure the formation of a desired synchronization pattern. Our procedure allows us to constrain the set of edges that can be modified, thus enforcing the sparsity structure of the network perturbation. The results are validated through a set of numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.