A new method for controlling active power in HVDC grids has been tested on the meshed CIGRE B4 DC grid test system. The control strategy is based on the recently proposed undead-band droop control, which combines DC voltage and AC frequency droop. It provides sufficient room for optimisation for both normal and disturbed operation. Its main features are flexibility, reliability due to distributed control, easy expandability of the system and minimisation of communication needs. The control technique has been tested and its effectiveness has been verified to demonstrate its suitability for application in future meshed HVDC grids.
Before diode rectifier (DR) technology for connecting offshore wind farms (OWFs) to HVdc is deployed, indepth studies are needed to assess the actual capabilities of DRconnected OWFs to contribute to the secure operation of the networks linked to them. This study assesses the capability of such an OWF to provide communication-less frequency support (CLFS) to an onshore ac network. It is shown that the HVdc link's offshore terminal direct voltage can be estimated from measurements at the OWF's point of connection with the DR platform. Two different methods are proposed for implementing CLFS in the OWF active power controls. In Method 1, the estimated offshore terminal direct voltage is used for estimating the onshore frequency deviation. In Method 2, the actual offshore terminal direct voltage measurement is used instead. Unique features of the provision of CLFS from OWFs connected to HVdc via DRs are highlighted, and the dynamic and static performance of the CLFS control scheme is compared to that of the communication-based frequency support scheme. To assess the impact of parameter estimation errors on the provision of CLFS, a parametric sensitivity study is presented as well, and recommendations are given to increase accuracy.
Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary frequency control of a power system can be enhanced. Unlike fixed speed wind turbines, VSWTs do not inherently contribute to system inertia, as they are decoupled from the power system through electronic converters. Emphasis in this paper is on how to emulate VSWTs inertia using control of the power electronic converter and on its impact on the primary frequency response of a power system. An additional control for the power electronics is implemented to give VSWTs a virtual inertia, referring to the kinetic energy stored in the rotating masses, which can be released initially to support the system's inertia. A simple Matlab/Simulink model and control of a VSWT and of a generic power system are developed to analyse the primary frequency response following different generation losses in a system comprising VSWTs provided with virtual inertia. The possibility of substituting a 50% share of conventional power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only conventional generation. The range of wind speeds near the power limitation zone seems to be the most critical from a primary response point of view. The theoretical reasons behind this are elucidated in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.