Maternal obesity during pregnancy increases the risk for offspring obesity, in part through effects on the developing brain. Previous research has shown that perinatal consumption of highly palatable foods by the mother can influence the development of offspring taste preferences and alter gene expression within the central nervous system (CNS) reward system. Opioids stimulate consumption of both fats and carbohydrates, and overconsumption of these energy dense foods increases the risk for obesity. What has remained unclear is whether this risk can be transmitted to the offspring before gestation or if it is wholly the gestational exposure that affects offspring brain development. Utilizing an embryo transfer experimental design, 2-cell embryos were obtained from obese or control dams, and transferred to obese or control gestational carriers. Expression of the mu-opioid receptor (MOR), preproenkephalin (PENK), and the dopamine transporter was evaluated in the hypothalamus and reward circuitry (ventral tegmental area, prefrontal cortex, and nucleus accumbens) in adult and late embryonic brains. Obesity before pregnancy altered expression levels of both MOR and PENK, with males relatively more affected than females. These data are the first to demonstrate that obesity at conception, in addition to during gestation, can program the brain reward system.
The neuroprotective e¡ects of lithium, a mood stabilizer, against glutamate-induced excitotoxicity in rat cortical neurons were associated with a decrease in Tyr1472 phosphorylation of the N-methyl-D-aspartate (NMDA) receptor NR2B subunit and a loss of receptor activity. Since this receptor tyrosine phosphorylation is mediated by the Src-family tyrosine kinases, we investigated the e¡ects of lithium on the Src kinase activity. Levels of phosphorylated Src kinase at Tyr416, an index of Src activation, were reduced after treatment with LiCl (1 mM) for more than 3 days. Protein levels of Src-family kinases such as Src, Fyn, and Yes were unchanged by lithium treatment. The activities of cytosolic protein tyrosine kinase and protein phosphatase were also unchanged by lithium treatment, indicating the selectivity and the modulation. Moreover, the levels of postsynaptic densities (PSD) and SynGAP, the scaffolding proteins of the NMDA receptor complex, were unaltered by lithium. A Src kinase inhibitor, SU6656, and an NR2B antagonist, ifenprodil, partially blocked glutamate excitotoxicity. Our results suggest that lithium-induced inactivation of Src kinase contributes to this drug-induced NMDA receptor inhibition and neuroprotection against excitotoxicity. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.