A commutative residuated lattice, is an ordered algebraic structure [Formula: see text], where (L, ·, e) is a commutative monoid, (L, ∧, ∨) is a lattice, and the operation → satisfies the equivalences [Formula: see text] for a, b, c ∊ L. The class of all commutative residuated lattices, denoted by [Formula: see text], is a finitely based variety of algebras. Historically speaking, our study draws primary inspiration from the work of M. Ward and R. P. Dilworth appearing in a series of important papers [9, 10, 19–22]. In the ensuing decades special examples of commutative, residuated lattices have received considerable attention, but we believe that this is the first time that a comprehensive theory on the structure of residuated lattices has been presented from the viewpoint of universal algebra. In particular, we show that [Formula: see text] is an "ideal variety" in the sense that its congruences correspond to order-convex subalgebras. As a consequence of the general theory, we present an equational basis for the subvariety [Formula: see text] generated by all commutative, residuated chains. We conclude the paper by proving that the congruence lattice of each member of [Formula: see text] is an algebraic, distributive lattice whose meet-prime elements form a root-system (dual tree). This result, together with the main results in [12, 18], will be used in a future publication to analyze the structure of finite members of [Formula: see text]. A comprehensive study of, not necessarily commutative, residuated lattices is presented in [4].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.