BACKGROUND Methods from 7 manufacturers and 1 distributor for directly measuring HDL cholesterol (C) and LDL-C were evaluated for imprecision, trueness, total error, and specificity in nonfrozen serum samples. METHODS We performed each direct method according to the manufacturer’s instructions, using a Roche/Hitachi 917 analyzer, and compared the results with those obtained with reference measurement procedures for HDL-C and LDL-C. Imprecision was estimated for 35 runs performed with frozen pooled serum specimens and triplicate measurements on each individual sample. Sera from 37 individuals without disease and 138 with disease (primarily dyslipidemic and cardiovascular) were measured by each method. Trueness and total error were evaluated from the difference between the direct methods and reference measurement procedures. Specificity was evaluated from the dispersion in differences observed. RESULTS Imprecision data based on 4 frozen serum pools showed total CVs <3.7% for HDL-C and <4.4% for LDL-C. Bias for the nondiseased group ranged from −5.4% to 4.8% for HDL-C and from −6.8% to 1.1% for LDL-C, and for the diseased group from −8.6% to 8.8% for HDL-C and from −11.8% to 4.1% for LDL-C. Total error for the nondiseased group ranged from −13.4% to 13.6% for HDL-C and from −13.3% to 13.5% for LDL-C, and for the diseased group from −19.8% to 36.3% for HDL-C and from −26.6% to 31.9% for LDL-C. CONCLUSIONS Six of 8 HDL-C and 5 of 8 LDL-C direct methods met the National Cholesterol Education Program total error goals for nondiseased individuals. All the methods failed to meet these goals for diseased individuals, however, because of lack of specificity toward abnormal lipoproteins.
BACKGROUND Standardized calibration does not change a creatinine measurement procedure's susceptibility to potentially interfering substances. METHODS We obtained individual residual serum or plasma samples (n = 365) from patients with 19 different disease categories associated with potentially interfering substances and from healthy controls. Additional sera at 0.9 mg/dL (80 μmol/L) and 3.8 mg/dL (336 μmol/L) creatinine were supplemented with acetoacetate, acetone, ascorbate, and pyruvate. We measured samples by 4 enzymatic and 3 Jaffe commercially available procedures and by a liquid chromatography/isotope dilution/mass spectrometry measurement procedure against which biases were determined. RESULTS The number of instances when 3 or more results in a disease category had biases greater than the limits of acceptability was 28 of 57 (49%) for Jaffe and 14 of 76 (18%) for enzymatic procedures. For the aggregate group of 59 diabetes samples with increased β-hydroxybutyrate, glucose, or glycosylated hemoglobin (Hb A1c), the enzymatic procedures had 10 biased results of 236 (4.2%) compared with 89 of 177 (50.3%) for the Jaffe procedures, and these interferences were highly procedure dependent. For supplemented sera, interferences were observed in 11 of 24 (46%) of groups for Jaffe and 8 of 32 (25%) of groups for enzymatic procedures and were different at low or high creatinine concentrations. CONCLUSIONS There were differences in both magnitude and direction of bias among measurement procedures, whether enzymatic or Jaffe. The influence of interfering substances was less frequent with the enzymatic procedures, but no procedure was unaffected. The details of implementation of a method principle influenced its susceptibility to potential interfering substances.
BACKGROUND Our objective was to evaluate the accuracy of cardiovascular disease (CVD) risk score classification by direct LDL cholesterol (dLDL-C), calculated LDL cholesterol (cLDL-C), and non–HDL cholesterol (non–HDL-C) compared to classification by reference measurement procedures (RMPs) performed at the CDC. METHODS We examined 175 individuals, including 138 with CVD or conditions that may affect LDL-C measurement. dLDL-C measurements were performed using Denka, Kyowa, Sekisui, Serotec, Sysmex, UMA, and Wako reagents. cLDL-C was calculated by the Friedewald equation, using each manufacturer’s direct HDL-C assay measurements, and total cholesterol and triglyceride measurements by Roche and Siemens (Advia) assays, respectively. RESULTS For participants with triglycerides <2.26 mmol/L (<200 mg/dL), the overall misclassification rate for the CVD risk score ranged from 5% to 17% for cLDL-C methods and 8% to 26% for dLDL-C methods when compared to the RMP. Only Wako dLDL-C had fewer misclassifications than its corresponding cLDL-C method (8% vs 17%; P <0.05). Non–HDL-C assays misclassified fewer patients than dLDL-C for 4 of 8 methods (P < 0.05). For participants with triglycerides ≥2.26 mmol/L (≥200 mg/dL) and <4.52 mmol/L (<400 mg/dL), dLDL-C methods, in general, performed better than cLDL-C methods, and non–HDL-C methods showed better correspondence to the RMP for CVD risk score than either dLDL-C or cLDL-C methods. CONCLUSIONS Except for hypertriglyceridemic individuals, 7 of 8 dLDL-C methods failed to show improved CVD risk score classification over the corresponding cLDL-C methods. Non–HDL-C showed overall the best concordance with the RMP for CVD risk score classification of both normal and hypertriglyceridemic individuals.
BACKGROUND Urine albumin is the primary biomarker for detection and monitoring of kidney damage. Because fixed decision criteria are used to identify patients with increased values, we investigated if commonly used routine measurement procedures gave comparable results. METHODS Results from 17 commercially available urine albumin measurement procedures were investigated vs an isotope dilution mass spectrometry (IDMS) procedure. Nonfrozen aliquots of freshly collected urine from 332 patients with chronic kidney disease, diabetes, cardiovascular disease, and hypertension were distributed to manufacturers to perform urine albumin measurements according to the respective instructions for use for each procedure. Frozen aliquots were used for measurements by the IDMS procedure. An error model was used to determine imprecision and bias components. RESULTS Median differences between the largest positive and negative biases vs IDMS were 45%, 37%, and 42% in the concentration intervals of 12–30 mg/L, 31–200 mg/L, and 201–1064 mg/L, respectively. Biases varied with concentration for most procedures and exceeded ±10% over the concentration interval for 14 of 16 quantitative procedures. Mean biases ranged from −35% to 34% at 15 mg/L. Dilution of samples with high concentrations introduced bias for 4 procedures. The combined CV was >10% for 5 procedures. It was not possible to estimate total error due to dependence of bias on concentration. CVs for sample-specific influences were 0% to 15.2%. CONCLUSIONS Bias was the dominant source of disagreement among routine measurement procedures. Consequently, standardization efforts will improve agreement among results. Variation of bias with concentration needs to be addressed by manufacturers.
The Vitamin D Standardization Program (VDSP) coordinated an interlaboratory study to assess the comparability of measurements of total 25-hydroxyvitamin D [25(OH)D] in human serum, which is the primary marker of vitamin D status. A set of 50 individual donor samples were analyzed by 15 different laboratories representing national nutrition surveys, assay manufacturers, and clinical and/or research laboratories to provide results for total 25(OH)D using both immunoassays (IAs) and LC tandem MS (MS/MS). The results were evaluated relative to bias compared with the target values assigned based on a combination of measurements at Ghent University (Belgium) and the U.S. National Institute of Standards and Technology using reference measurement procedures for the determination of 25(OH)D2 and 25(OH)D3. CV and mean bias for each laboratory and assay platform were assessed and compared with previously established VDSP performance criteria, namely CV ≤ 10% and mean bias ≤ 5%. Nearly all LC-MS/MS results achieved VDSP criteria, whereas only 50% of IAs met the criterion for a ≤10% CV and only three of eight IAs achieved the ≤5% bias. These results establish a benchmark for the evaluation of 25(OH)D assay performance and standardization activities in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.