There is an enormous potential for synthesizing novel bio-based functionalized polyesters under environmentally benign conditions by exploiting the catalytic efficiency and selectivity of enzymes. Despite the wide number of studies addressing in vitro enzymatic polycondensation, insufficient progress has been documented in the last two decades towards the preparative and industrial application of this methodology. The present study analyses bottlenecks hampering the practical applicability of enzymatic polycondensation that have been most often neglected in the past, with a specific focus on solvent-free processes. Data here presented elucidate how classical approaches for enzyme immobilization combined\ud
with batch reactor configuration translate into insufficient mass transfer as well as limited recyclability of the biocatalyst. In order to overcome such bottlenecks, the present study proposes thin-film processes employing robust covalently immobilized lipases. The strategy was validated experimentally by carrying out the solvent-free polycondensation of esters of adipic and itaconic acids. The results open new perspectives for enlarging the applicability of biocatalysts in other viscous and solvent-free syntheses
Porous and rigid methacrylic Synbeads were optimized and applied efficiently to the solid phase peptide synthesis with the objective of improving significantly volumetric yields (0.33 mol/L calculated on the basis of maximum chemical accessibility, i.e. the maximum number of functional groups that can be acylated by FmocCl) as compared to swelling commercial polymers (from 0.06 to 0.12 mol/L). The effects of the density of functional groups and spacer length were investigated obtaining a chemical accessibility of the functional groups up to 1 mmol/g(dry). High resolution magic angle spinning (HR-MAS) was exploited to evidence the presence of "solution-like" flexible linkers anchored on the rigid methacrylic backbone of Synbeads and to study the degree of functionalization by the Wang linker. To demonstrate the efficiency of the optimized Synbeads, the peptides Somatostatin and Terlipressin were synthesized. In the case of Somatostatin, final synthetic yields of 45 and 60% were achieved by following the HCTU/DIPEA and DIC/HOBt routes respectively, with the HPLC purity always higher than 83%. In the case of Terlipressin, the synthesis was carried out in parallel on Synbeads and also on TentaGel, ChemMatrix, and PS-DVB for comparison (DIC/HOBt route). The profiles describing the synthetic efficiency demonstrated that Synbeads leads to synthetic efficiency (86%) comparable to PS-DVB (96%) or ChemMatrix (84%). In order to gain a more precise picture of chemical and morphological features of Synbeads, their matrix was also characterized by exploiting innovative approaches based on FTIR microspectroscopy with a conventional source and with synchrotron radiation. A uniform distribution of the functional groups was evidenced through a detailed chemical mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.