The present study was designed to examine the hypothesis that hypothalamic-pituitary-adrenal axis activity as measured by 24-h cortisol production rate (CPR) and plasma levels of free cortisol is linked to increased body fat in adults, and that increased cortisol levels with aging results from increased CPR. Fifty-four healthy men and women volunteers with a wide range of body mass indexes and ages underwent measurement of CPR by isotope dilution measured by gas chromatography-mass spectroscopy, cortisol-binding globulin, and free cortisol in pooled 24-h plasma, body composition, and leptin. Cortisol clearance rates were determined from the 10-h disappearance curves of hydrocortisone after steady-state infusion in a separate group of lean and obese subjects with adrenal insufficiency. Although CPR significantly increased with increasing body mass index and percentage body fat, free cortisol levels remained independent of body composition and leptin levels due to increased cortisol clearance rates. CPR and free cortisol levels were, however, significantly higher in men than women. In addition, 24-h plasma free cortisol levels were increased with age in association with increased CPR, independent of body size. This increase in hypothalamic-pituitary-adrenal axis activity may play a role in the alterations in body composition and central fat distribution in men vs. women and with aging.
The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from 5 European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs.
The available evidence suggests that most of the nicotine in mainstream tobacco smoke is in the smoke particle matter (PM) phase. Nicotine can exist in protonated and free base forms in the smoke PM, and alpha(fb) is the fraction of the PM nicotine that is in the free base form. Because only the free base form can volatilize from the smoke PM phase to the gas phase of an inhaled aerosol and because gaseous nicotine deposits rapidly in the respiratory tract (RT), the magnitude and rate of nicotine deposition in the RT will depend on alpha(fb). The types of values that alpha(fb) can assume in the PM of cigarette smoke aerosols have not been well-known. The conventional view has been that mainstream cigarette smoke PM contains relatively little free base nicotine so that the cigarette smoker must absorb nicotine mostly from deposited particles. A prior study concluded that because cigarette smoke is at "pH 5.3", there is very little free base nicotine in such smoke. A 1994 internal tobacco company document discusses the view that "smoke pH" values for cigarette smoke are "approximately 6.0". This work uses volatility-based measurements to provide determinations of equilibrium nicotine alpha(fb) values for mainstream smoke PM from selected cigarettes. The effective pH (i.e., pH(eff)) of the smoke PM from selected brands of commercial cigarettes was found to span a range of 6.0-7.8 (nicotine alpha(fb) = 0.01-0.36), with all pH(eff) values much larger than 5.3 and most larger than 6.0.
Adsorption/thermal desorption with multisorbent airsampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3-trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected concentrations were 0.23, 0.42, and 0.70 ppbv at the three sites. Analytical precision was measured using duplicate sampling. As ex-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.