Global synthesis of the findings from ¾140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374 000 km 2 ) range from 0Ð2 to 35 mm year 1 , representing 0Ð1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ¾720 m year 1 , results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños relative to periods dominated by La Niñas (1941)(1942)(1943)(1944)(1945)(1946)(1947)(1948)(1949)(1950)(1951)(1952)(1953)(1954)(1955)(1956)(1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year 1 during the Sahel drought (1970)(1971)(1972)(1973)(1974)(1975)(1976)(1977)(1978)(1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986) to 150 mm year 1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (½10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The impact of LU change was much greater than climate variability in Niger (Africa), where replacement of savanna by crops increased recharge by about an order of magnitude even during severe droughts. Sensitivity of recharge to LU/LC changes suggests that recharge may be controlled through management of LU. In irrigated areas, recharge varies from 10 to 485 mm year 1 , representing 1-25% of irrigation plus precipitation. However, irrigation pumpage in groundwater-fed irrigated areas greatly exceeds recharge rates, resulting in groundwater mining. Increased recharge related to cultivation has mobilized salts that accumulated in the unsaturated zone over millennia, resulting in widespread groundwater and surface water contamination, particularly in Australia. The synthesis of recharge rates provided in this study contains valuable information for developing sustainable groundwater resource programmes ...
The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality 1-3 . Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality 4,5 . Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.Forests play a central role in global water, energy and biogeochemical cycles and provide substantial ecosystem services to societies around the globe 6 . Yet the fate of forest ecosystems in a changing climate is highly uncertain. Rising atmospheric CO 2 concentrations may benefit trees, particularly through increasing water-use efficiency 7 , but concomitant increases in temperature and drought stress could potentially overwhelm these benefits, leading to widespread forest dieback in many ecosystems globally 8 . Although precipitation projections under climate scenarios are more variable and uncertain, general circulation models project consistent increases in air temperature and thus evaporation over much of the world and resulting decreases in soil moisture in many regions, leading to more intense and frequent droughts 9 . Recent studies have indicated resilience in forest biomes in response to early twenty-first-century droughts through inter-annual modulations in water-use efficiency 10 and long-term increases in forest water-use efficiency 7 . In contrast, severe regional droughts have strongly decreased the carbon sink of key forest ecosystems [11][12][13] and widespread, climate-induced tree mortality has been observed around the globe 8,14 .
Recent studies suggest that species distribution models (SDMs) based on fine-scale climate data may provide markedly different estimates of climate-change impacts than coarse-scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse-scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000-fold range of spatial scales (0.008-16 km 2 ). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate-data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine-and coarse-scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making.
Introduction: Resource managers need spatially explicit models of hydrologic response to changes in key climatic drivers across variable landscape conditions. We demonstrate the utility of a Basin Characterization Model for California (CA-BCM) to integrate high-resolution data on physical watershed characteristics with historical or projected climate data to predict watershed-specific hydrologic responses. Methods: The CA-BCM applies a monthly regional water-balance model to simulate hydrologic responses to climate at the spatial resolution of a 270-m grid. The model has been calibrated using a total of 159 relatively unimpaired watersheds for the California region. Results: As a result of calibration, predicted basin discharge closely matches measured data for validation watersheds. The CA-BCM recharge and runoff estimates, combined with estimates of snowpack and timing of snowmelt, provide a basis for assessing variations in water availability. Another important output variable, climatic water deficit, integrates the combined effects of temperature and rainfall on site-specific soil moisture, a factor that plants may respond to more directly than air temperature and precipitation alone. Model outputs are calculated for each grid cell, allowing results to be summarized for a variety of planning units including hillslopes, watersheds, ecoregions, or political boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.