This work investigates the possibility of using a novel evolutionary based technique as a solution for the navigation problem of a mobile robot in a strange environment which is based on Teaching-Learning-Based Optimization. TLBO is employed to train the parameters of ANFIS structure for optimal trajectory and minimum travelling time to reach the goal. The obtained results using the suggested algorithm are validated by comparison with different results from other intelligent algorithms such as particle swarm optimization (PSO), invasive weed optimization (IWO), and biogeography-based optimization (BBO). At the end, the quality of the obtained results extracted from simulations affirms TLBO-based ANFIS as an efficient alternative method for solving the navigation problem of the mobile robot.
<p>This paper introduce a new approach for scheduling algorithms which aim to improve real time operating system CPU performance. This new approach of CPU Scheduling algorithm is based on the combination of round-robin (RR) and Priority based (PB) scheduling algorithms. This solution maintains the advantage of simple round robin scheduling algorithm, which is reducing starvation and integrates the advantage of priority scheduling. The proposed algorithm implements the concept of time quantum and assigning as well priority index to the processes. Existing round robin CPU scheduling algorithm cannot be dedicated to real time operating system due to their large waiting time, large response time, large turnaround time and less throughput. This new algorithm improves all the drawbacks of round robin CPU scheduling algorithm. In addition, this paper presents analysis comparing proposed algorithm with existing round robin scheduling algorithm focusing on average waiting time and average turnaround time.</p>
For any mobile device, the ability to navigate smoothly in its environment is of paramount importance, which justifies researchers’ continuous work on designing new techniques to reach this goal. In this work, we briefly present a description of a hard work on designing a Same Fuzzy Logic Controller (S.F.L.C.) of the two reactive behaviors of the mobile robot, namely, “go to goal obstacle avoidance” and “wall following,” in order to solve its navigation problems. This new technique allows an optimal motion planning in terms of path length and travelling time; it is meant to avoid collisions with convex and concave obstacles and to achieve the shortest path followed by the mobile robot. The efficiency of employing the proposed navigational controller is validated when compared to the results from other intelligent approaches; its qualities make of it an efficient alternative method for solving the path planning problem of the mobile robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.