Heterostyly is a wide-spread floral adaptation to promote outbreeding, yet its genetic basis and evolutionary origin remain poorly understood. In Primula (primroses), heterostyly is controlled by the S-locus supergene that determines the reciprocal arrangement of reproductive organs and incompatibility between the two morphs. However, the identities of the component genes remain unknown. Here, we identify the Primula CYP734A50 gene, encoding a putative brassinosteroid-degrading enzyme, as the G locus that determines the style-length dimorphism. CYP734A50 is only present on the short-styled S-morph haplotype, it is specifically expressed in S-morph styles, and its loss or inactivation leads to long styles. The gene arose by a duplication specific to the Primulaceae lineage and shows an accelerated rate of molecular evolution. Thus, our results provide a mechanistic explanation for the Primula style-length dimorphism and begin to shed light on the evolution of the S-locus as a prime model for a complex plant supergene.DOI: http://dx.doi.org/10.7554/eLife.17956.001
The plant-specific, B3 domain-containing transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is an essential component of the regulatory network controlling the development and maturation of the Arabidopsis thaliana seed. Genome-wide chromatin immunoprecipitation (ChIP-chip), transcriptome analysis, quantitative reverse transcriptase–polymerase chain reaction and a transient promoter activation assay have been combined to identify a set of 98 ABI3 target genes. Most of these presumptive ABI3 targets require the presence of abscisic acid for their activation and are specifically expressed during seed maturation. ABI3 target promoters are enriched for G-box-like and RY-like elements. The general occurrence of these cis motifs in non-ABI3 target promoters suggests the existence of as yet unidentified regulatory signals, some of which may be associated with epigenetic control. Several members of the ABI3 regulon are also regulated by other transcription factors, including the seed-specific, B3 domain-containing FUS3 and LEC2. The data strengthen and extend the notion that ABI3 is essential for the protection of embryonic structures from desiccation and raise pertinent questions regarding the specificity of promoter recognition.
Piriformospora indica, an endophytic fungus of the Sebacinaceae family, promotes growth of Arabidopsis and tobacco seedlings and stimulates nitrogen accumulation and the expression of the genes for nitrate reductase and the starch-degrading enzyme glucan-water dikinase (SEX1) in roots. Neither growth promotion nor stimulation of the two enzymes requires heterotrimeric G proteins. P. indica also stimulates the expression of the uidA gene under the control of the Arabidopsis nitrate reductase (Nia2) promoter in transgenic tobacco seedlings. At least two regions (؊470/؊439 and ؊103/ ؊89) are important for Nia2 promoter activity in tobacco roots. One of the regions contains an element, ATGATAGATAAT, that binds to a homeodomain transcription factor in vitro. The message for this transcription factor is up-regulated by P. indica. The transcription factor also binds to a CTGATAGATCT segment in the SEX1 promoter in vitro. We propose that the growthpromoting effect initiated by P. indica is accompanied by a co-regulated stimulation of enzymes involved in nitrate and starch metabolisms.Often nitrogen is the limiting source for plant growth and development. It is recruited by plants either as nitrate or ammonium or for a few species by nitrogen fixation with the help of rhizobia (1, 2). Mycorrhizal fungi also play an important role in delivering either nitrate or ammonium to the root cells. It is believed that mycorrhizal fungi preferentially recruit ammonium rather than nitrate from the soil and that amino acids represent the major compounds that serve to transfer nitrogen to the host plant (cf. Refs. 3 and 4). We studied Piriformospora indica, an endophytic fungus of the Sebacinaceae family, which colonizes the roots of a wide variety of plant species and promotes their growth (5-10). The interaction of the endophytic fungus with plant roots is accompanied by an enormous requisition of nitrogen from the environment. By analyzing the interaction of P. indica with Arabidopsis and tobacco roots we found that in contrast to mycorrhizal associations, nitrate reduction in the roots is stimulated by P. indica. A homeodomain transcription factor responds to the fungus and binds to promoter regions of the P. indica-responsive Nia2, SEX1, and 2-nitropropane dioxygenase genes. These results suggest that the expression of P. indica-responsive target genes may be controlled by common regulatory elements and trans-factors. MATERIALS AND METHODSTransgenic Tobacco-Transgenic seeds of Nicotiana tabacum L., var. Samsun NN were obtained from greenhouse-grown plants (6). They were sterilized and germinated on Murashige-Skoog medium (11) supplemented with 2% (w/v) sucrose and 0.8% (w/v) agar in temperaturecontrolled (25°C) growth chambers under a 16-h light/8-h dark cycle. 80 g of ml Ϫ1 (w/v) kanamycin was added to the medium. Four-week-old plantlets were transferred to soil to obtain seeds for the physiological experiments. The antisense lines for the heterotrimeric G protein subunit  were described previously (12).Growth Conditions of Pla...
In Arabidopsis thaliana (L.) Heynh. the seed-specific transcription factors ABI3 and FUS3 have key regulatory functions during the development of mature seeds. The highly conserved RY motif [DNA motif CATGCA(TG)], present in many seed-specific promoters, is an essential target of both regulators. Here we show that, in vitro, the full-length ABI3 protein, as well as FUS3 protein, is able to bind to RY-DNA and that the B3 domains of both transcription factors are necessary and sufficient for the specific interaction with the RY element. Flanking sequences of the RY motif modulate the binding, but the presence of an RY sequence alone allows the specific interaction of ABI3 and FUS3 with the target in vitro. Transcriptional activity of ABI3 and FUS3, measured by transient promoter activation, requires the B3 DNA-binding domain and an activation domain. In addition to the known N-terminal-located activation domain, a second transcription activation domain was found in the B1 region of ABI3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.