This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.
The Swiss Light Source (SLS) at the Paul Scherrer Institute (
The FEMTO source under construction at the μXAS beamline is designed to enable tunable time-resolved laser/xray absorption and diffraction experiments in photochemistry and condensed matter with ps-and sub-ps resolution. The design takes advantage of (1) the highly stable operation of the SLS storage ring, (2) the reliable high harmonic operation of small gap, short period undulators to generate hard x-rays with energy 3-18 keV at 2.4 GeV beam energy, and (3) the progress in high power, high repetition rate fs solid-state laser technology to employ laser/e-beam 'slicing' to reach a time resolution of ultimately 100 fs. The source will profit from the inherently synchronized pump (laser I: 100 fs, 2 mJ, 1 kHz) and probe (sliced X-rays, laser II: 50 fs, 5 mJ, 1 kHz) pulses, and from the excellent stability of the SLS storage ring which is operated in top-up mode and controlled by a fast orbit feedback (FOFB). Coherent radiation emitted at THz frequencies by the sliced 100 fs electron bunches will be monitored as on-line cross-correlation signal to keep the laser-electron beam interaction at optimum. The source is designed to provide at 8 keV (100 fs) a monochromized flux of 10 4 ph/s/0.01% bw (Si crystal monochromator) and 10 6 ph/s/1.5% bw (multilayer monochromator) at the sample. It is operated in parasitic mode using a hybrid bunch filling pattern. Because of the low intensity measurements are carried out repetitively over many shots using refreshing samples and gated detectors. 'Diffraction gating' experiments will be used to characterize the sub-ps X-ray pulses.
Articles you may be interested inNanosecond pulsed field emission from single-gate metallic field emitter arrays fabricated by moldinga) J. Vac. Sci. Technol. B 29, 02B117 (2011); 10.1116/1.3569820 Fabrication and characterization of Spindt-type field emission arrays coated with ZrC thin films Full scale simulation of a field-emitter arrays based electron source for free-electron lasers Pulsed field emitted current from different commercial samples in the purpose of a free electron laser application J. Vac. Sci. Technol. B 23, 680 (2005); 10.1116/1.1857892High current, high current density field emitter array cathodesThe properties of the electron source define the ultimate limit of the beam quality in linear accelerators such as free electron lasers ͑FELs͒. The goal is to develop an electron gun delivering beam emittance lower than the current state of the art. Such a gun should reduce the cost and size of an x-ray FEL ͑XFEL͒. In this article we present two concepts of field emitter cathodes which could potentially produce low emittance beam. The first challenging parameter for such cathode is to emit peak current as high as 5 A. This is the minimum current requirement for the XFEL concept from Paul Scherrer Institut ͑http://leg.web.psi.ch͒. Maximum currents of 0.12 and 0.58 A have been reached, respectively, with field emitter arrays and single needle cathodes. Laser assisted field emission gave encouraging results to reach even higher peak current and to prebunch the beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.