Wood material from the sapwood of the studied tree species is as useful as cellulose for studying environmental effects on tree-ring δ(18)O and δ(13)C values at a short-term scale as considered in most ecophysiological studies. The more variable response of oak may require further investigations.
Here, we report site-to-site variability and 12-14 year trends of dissolved organic carbon (DOC) from organic layers and mineral soils of 22 forests in Bavaria, Germany. DOC concentrations in the organic layer were negatively correlated with mean annual precipitation and elevation whereas air temperature had a positive effect on DOC concentrations. DOC fluxes in subsoils increased by 3 kg ha À1 yr À1 per 100 mm precipitation or per 100 m elevation. The highest DOC concentrations were found under pine stands with mor humus. Average DOC concentrations in organic layer leachates followed the order: pine4oak4spruce4beech. However, the order was different for mean DOC fluxes (spruce4pine4oak4beech) because of varying precipitation regimes among the forest types. In 12 of 22 sites, DOC concentrations of organic layer leachates significantly increased by 0.5 to 3.1 mg C L À1 yr À1 during the sampling period. The increase in DOC concentration coincided with decreasing sulfate concentration, indicating that sulfate concentration is an important driver of DOC solubility in the organic layer of these forest sites. In contrast to the organic layer, DOC concentrations below 60 cm mineral soil depth decreased by o0.1-0.4 mg C L À1 yr À1 at eight sites. The negative DOC trends were attributed to (i) increasing adsorption of DOC by mineral surfaces resulting from desorption of sulfate and (ii) increasing decay of DOC resulting from decreasing stabilization of DOC by organo-Al complexes. Trends of DOC fluxes from organic layers were consistent with those of DOC concentrations although trends were only significant at seven sites. DOC fluxes in the subsoil were with few exceptions small and trends were generally not significant. Our results suggest that enhanced mobilization of DOC in forest floors contributed to the increase of DOC in surface waters while mineral horizons did not contribute to increasing DOC export of forest soils.
Climate warming is expected to induce soil organic carbon losses in mountain soils that result, in turn, in reduced soil fertility, reduced water storage capacity and positive feedback on climate change. Here we combine two independent sets of measurements of soil organic carbon from forest soils in the German Alps-repeated measurements from 1976 to 2010 and from 1987 to 2011-to show that warming has caused a 14% decline in topsoil organic carbon stocks. The decreases in soil carbon occurred over a period of significant increases in six-month summer temperatures, with the most substantial decreases occurring at sites with large changes in mean annual temperature. Organic carbon stock decreases were largest-on average 32%-in forest soils with initial topsoil organic carbon stocks greater than 8 kg C m −2 , which can be found predominantly on calcareous bedrock. However, organic carbon stocks of forest soils with lower initial carbon stocks, as well as soils under pasture or at elevations above 1,150 m, have not changed significantly. We conclude that warming is the most likely reason for the observed losses of soil organic carbon, but that site, land use and elevation may ameliorate the e ects of climate change.
There is public concern that large-scale disturbances to forest cover caused by insects and storm winds in the Bohemian Forest could intensify high water flows and enhance the expected flooding risks predicted in current regional climate change scenarios. We analysed stream discharge in Upper Vydra and Große Ohe, neighbouring catchments in the Bohemian Forest, the largest contiguous forested area in Central Europe. Upper Vydra, in the Šumava National Park, and Große Ohe (including the Upper Große Ohe headwater catchment in the Bavarian Forest National Park) are similar in size, but differ in land use cover and the extent of disturbed Norway spruce stands. Publicly available runoff and meteorological data were examined using non-parametric trend and breakpoint analysis. Together with mapped vegetation cover changes, the results were used to address the following questions: 1) are there significant changes in the hydrological cycle and, if so, do these changes relate to 2) the extent and expansion of disturbance in forests stands and/or 3) altered precipitation dynamics and thermal conditions?We found no marked overall change in annual runoff or in annual or seasonal precipitation, but a significant increase in high flows in March. This overall trend related to the marked warming in late winter and early spring (+~4 K in April, p < 0.01), irrespective of altitude and slope position. It significantly shifted the end of the snow cover period by more than three weeks to the beginning/middle of April depending on altitude, and intensified snow melt.In the Upper Große Ohe catchment, a significant decrease in catchment balance, the difference between the long term precipitation and runoff (-72 mm, 11%) was found when the loss of tree cover reached 30% of catchment area. Diminished evapotranspiration losses from severely disturbed stands increased groundwater recharge during summer and caused a significant rise in low flows in autumn.However, observed increases in late winter high flows were due to warming only. They could be further intensified by the increasing winter precipitation predicted under present climate change scenarios, and would therefore increase the risk of flooding at lower elevations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.