Abstract.A fundamental class of problems in wireless communication is concerned with the assignment of suitable transmission powers to wireless devices/stations such that the resulting communication graph satisfies certain desired properties and the overall energy consumed is minimized. Many concrete communication tasks in a wireless network like broadcast, multicast, point-to-point routing, creation of a communication backbone, etc. can be regarded as such a power assignment problem.This paper considers several problems of that kind; the first problem was studied before in [1,6] and aims to select and assign powers to k out of a total of n wireless network stations such that all stations are within reach of at least one of the selected stations. We show that the problem can be (1+ ) approximated by only looking at a small subset of the input,, i.e. independent of n and polynomial in k and 1/ . Here d denotes the dimension of the space where the wireless devices are distributed, so typically d ≤ 3 and α describes the relation between the Euclidean distance between two stations and the power consumption for establishing a wireless connection between them. Using this coreset we are able to improve considerably on the running time of n ((α/ ) O(d) ) for the algorithm by Bilo et al. at ESA'05 ([6]) actually obtaining a running time that is linear in n. Furthermore we sketch how outliers can be handled in our coreset construction. The second problem deals with the energy-efficient, bounded-hop multicast operation: Given a subset C out of a set of n stations and a designated source node s we want to assign powers to the stations such that every node in C is reached by a transmission from s within k hops. Again we show that a coreset of size independent of n and polynomial in k, |C|, 1/ exists, and use this to provide an algorithm which runs in time linear in n.The last problem deals with a variant of non-metric TSP problem where the edge costs are the squared Euclidean distances; this problem is motivated by data aggregation schemes in wireless sensor networks. We show that a good TSP tour under Euclidean edge costs can be very bad in the squared distance measure and provide a simple constant approximation algorithm, partly improving upon previous results in [5], [4].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.