The need for zero emission drive is a global necessity that can contribute to mitigate greenhouse gas emissions. In this context, fuel cell hybrid electric vehicles are increasingly attracting interest by governments, companies and academia. While parked they can operate as power generation units, given the proper connection to the electricity grid via vehicle-to-grid integration (V2G), or even power appliances directly (Vehicle-to-Load, V2L). In this study, we analysed the use of a hydrogen fuel cell electric scooter in combined driving, V2G and V2L mode. V2G resulted in the most efficient mode of the three, while V2L led to higher degradation rates. The measured average cell voltage degradation rate was 209 mV/h for driving mode, 356 mV/h for V2G and 648 mV/h for V2L. The insights provided in this study are useful to develop new, optimized and specifically targeted energy management systems for power generation of hydrogen hybrid electric drive vehicles.
Capping greenhouse gas emissions and reducing air pollution on the farm challenges the place of the diesel tractor in future sustainable vineyards. Tractors are responsible for the largest share of all CO2 emissions at vineyard plot scale, mostly resulting from pest and disease management and soil maintenance (Adoir et al., 2019). Electric vehicles will thus be required to meet climate change reduction goals. In this article, the characteristics of battery and hydrogen electric tractors are compared, and their potential in the grapevine growing sector is assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.